RESUMEN
This work presents a novel and compact method for simultaneously measuring errors in linear displacement and vertical straightness of a moving linear air-bearing stage using 3D sinusoidal-groove linear reflective grating and a novel triangular wave-based sequence signal analysis method. The new scheme is distinct from the previous studies as it considers two signals to analyze linear displacement and vertical straightness. In addition, the tilt motion of the precision linear stage could also be measured using the 3D sinusoidal-groove linear reflective grating. The proposed system is similar to a linear encoder and can make online measurements of stage errors to analyze automatic processes and also be used for real-time monitoring. The performance of the proposed method and its reliability have been verified by experiments. The experiments show that the maximum error of measured tilt angle, linear displacement, and vertical straightness error is less than 0.058°, 0.239 µm, and 0.188 µm, respectively. The maximum repeatability error on measurement of tilt angle, linear displacement, and vertical straightness error is less than ±0.189o, ±0.093 µm, and ±0.016 µm, respectively. The proposed system is suitable for error compensation in the multi-axis system and finds application in most industries.
RESUMEN
In order to increase the performance of tool or mold/die, there are a lot of micro features on the surface to provide special functions, such as anti-adhesion or lubrication. The MPB (Micro Particle Bombarding) process provides a powerful technology to enhance the surface quality without damaging the micro features. The effect of MPB parameters were investigated by bombarding the surface with extremely small particles (20~200 µm in diameter) at a high velocity and pressure to obtain a better surface integrity. -The MPB has two functions, one is micro blasting for cleaning purposes and the other is micro shot peening for surface strengthening. The regression relationship between particle bombarding time and micro hardness is established to predict the surface hardness after MPB process. The experimental results reveal that the surface hardness of cermet is increased 14~66% (HV2167~HV3163) by micro particle bombarding. The micro shot peening provides a good surface integrity due to thebetter surface roughness of 0.1 µmRa and higher compress residual stress of -1393.7 MPa, which is up to 26% enhancement compared with the base material cermet. After micro shot peening, the surface hardness of the SKD11 tool steel increased from HV 686 to HV 739~985. The surface roughness of SKD 11 after micro shot peening was 0.31-0.48 µmRa, while the surface roughness after micro blasting was 0.77-1.15 µmRa. It is useful to predict the residual stress for micro blasting by surface roughness, and to estimate the residual stress after micro shot peening by surface hardness by applying the MPB process in industry in the case of SKD 11 tool steel.
RESUMEN
Carbon fiber-reinforced polymer (CFRP) has been widely implemented in electric vehicle bodies and aircraft fuselage structures. The purpose of CFRP is to reduce the weight and impart rigidity in the final product. A beam structure is typically used to bear the structural load, and the rigidity of the beam can be changed by arranging the laminated fibers at different angles. In this study, a composite I-beam is used as an example in engineering components. Because the theoretical model of the superimposed composite I-beam is established, the theoretical formula is based on the theoretical assumptions of the two-dimensional composite beam, and is combined with the traditional composite plate theory to analyze the maximum bending stress, strain, and deflection. During the theoretical derivation, it is assumed that the flanges of the I-beams are divided into narrow and wide flanges. The beams are considered as structures of beams and flatbeds. When a narrow flange is loaded in the side, the wide flange has no lateral deformation, and the lateral moments are neglected. Therefore, the accuracy of this formula needs to be verified. The purpose of this study is to verify the accuracy of theoretical solutions for the deflection and stress analysis of composite beams. A finite element analysis model is used as the basis for comparing the theoretical solutions. The results indicate that when the aspect ratio of the beam is >15, the theoretical solution will have better accuracy. Without the addition of the material, when 0° ply is placed on the outermost layer of the flange of the nonsymmetric beam, the effective rigidity of the beam is increased by 4−5% compared with the symmetrical beam. The accuracy range of the theoretical solution for the composite beams can be accurately defined based on the results of this study.
RESUMEN
Temperature history and hardening depth are experimentally characterized in the rotational laser hardening process for an AISI 1045 medium carbon steel specimen. A three-dimensional finite element model is proposed to predict the temperature field distribution and hardening zone area. The laser temperature field is set up for an average distribution and scanned along a circular path. Linear motion also takes place alongside rotation. The prediction of hardening area can be increased by increasing the rotational radius, which in turn raises the processing efficiency. A good agreement is found between the experimental characterized hardness value and metallographic composition. The uniformity of the hardening area decreases with increasing laser scanning speed. The increased laser power input could help to expand the hardening depth.