Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 296: 100050, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33168630

RESUMEN

Large cytosolic protein aggregates are removed by two main cellular processes, autophagy and the ubiquitin-proteasome system, and defective clearance of these protein aggregates results in proteotoxicity and cell death. Recently, we found that the eIF2α kinase heme-regulated inhibitory (HRI) induced a cytosolic unfolded protein response to prevent aggregation of innate immune signalosomes, but whether HRI acts as a general sensor of proteotoxicity in the cytosol remains unclear. Here we show that HRI controls autophagy to clear cytosolic protein aggregates when the ubiquitin-proteasome system is inhibited. We further report that silencing the expression of HRI resulted in decreased levels of BAG3 and HSPB8, two proteins involved in chaperone-assisted selective autophagy, suggesting that HRI may control proteostasis in the cytosol at least in part through chaperone-assisted selective autophagy. Moreover, knocking down the expression of HRI resulted in cytotoxic accumulation of overexpressed α-synuclein, a protein known to aggregate in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In agreement with these data, protein aggregate accumulation and microglia activation were observed in the spinal cord white matter of 7-month-old Hri-/- mice as compared with Hri+/+ littermates. Moreover, aged Hri-/- mice showed accumulation of misfolded α-synuclein in the lateral collateral pathway, a region of the sacral spinal cord horn that receives visceral sensory afferents from the bladder and distal colon, a pathological feature common to α-synucleinopathies in humans. Together, these results suggest that HRI contributes to a general cytosolic unfolded protein response that could be leveraged to bolster the clearance of cytotoxic protein aggregates.


Asunto(s)
Autofagia , Microglía/metabolismo , Agregado de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Médula Espinal/metabolismo , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Ratones , Ratones Noqueados , Microglía/patología , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Médula Espinal/patología , eIF-2 Quinasa/genética
2.
J Biol Chem ; 290(34): 20904-20918, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26134566

RESUMEN

Invasive bacterial pathogens induce an amino acid starvation (AAS) response in infected host cells that controls host defense in part by promoting autophagy. However, whether AAS has additional significant effects on the host response to intracellular bacteria remains poorly characterized. Here we showed that Shigella, Salmonella, and Listeria interfere with spliceosomal U snRNA maturation in the cytosol. Bacterial infection resulted in the rerouting of U snRNAs and their cytoplasmic escort, the survival motor neuron (SMN) complex, to processing bodies, thus forming U snRNA bodies (U bodies). This process likely contributes to the decline in the cytosolic levels of U snRNAs and of the SMN complex proteins SMN and DDX20 that we observed in infected cells. U body formation was triggered by membrane damage in infected cells and was associated with the induction of metabolic stresses, such as AAS or endoplasmic reticulum stress. Mechanistically, targeting of U snRNAs to U bodies was regulated by translation initiation inhibition and the ATF4/ATF3 pathway, and U bodies rapidly disappeared upon removal of the stress, suggesting that their accumulation represented an adaptive response to metabolic stress. Importantly, this process likely contributed to shape the host response to invasive bacteria because down-regulation of DDX20 expression using short hairpin RNA (shRNA) amplified ATF3- and NF-κB-dependent signaling. Together, these results identify a critical role for metabolic stress and invasive bacterial pathogens in U body formation and suggest that this process contributes to host defense.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Listeria monocytogenes/metabolismo , ARN Nuclear Pequeño/metabolismo , Salmonella typhimurium/metabolismo , Shigella flexneri/metabolismo , Estrés Fisiológico/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Citoplasma/microbiología , Proteína 20 DEAD-Box/antagonistas & inhibidores , Proteína 20 DEAD-Box/genética , Proteína 20 DEAD-Box/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Listeria monocytogenes/patogenicidad , FN-kappa B/genética , FN-kappa B/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/ultraestructura , Salmonella typhimurium/patogenicidad , Shigella flexneri/patogenicidad , Transducción de Señal , Empalmosomas/metabolismo , Empalmosomas/microbiología , Proteína 1 para la Supervivencia de la Neurona Motora/genética
3.
BMC Genomics ; 17: 680, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27561422

RESUMEN

BACKGROUND: The intestinal epithelium plays a critical role in nutrient absorption and innate immune defense. Recent studies showed that metabolic stress pathways, in particular the integrated stress response (ISR), control intestinal epithelial cell fate and function. Here, we used RNA-seq to analyze the global transcript level and alternative splicing responses of primary murine enteroids undergoing two distinct ISR-triggering stresses, endoplasmic reticulum (ER) stress and nutrient starvation. RESULTS: Our results reveal the core transcript level response to ISR-associated stress in murine enteroids, which includes induction of stress transcription factors, as well as genes associated with chemotaxis and inflammation. We also identified the transcript expression signatures that are unique to each ISR stress. Among these, we observed that ER stress and nutrient starvation had opposite effects on intestinal stem cell (ISC) transcriptional reprogramming. In agreement, ER stress decreased EdU incorporation, a marker of cell proliferation, in primary murine enteroids, while nutrient starvation had an opposite effect. We also analyzed the impact of these cellular stresses on mRNA splicing regulation. Splicing events commonly regulated by both stresses affected genes regulating splicing and were associated with nonsense-mediated decay (NMD), suggesting that splicing is modulated by an auto-regulatory feedback loop during stress. In addition, we also identified a number of genes displaying stress-specific splicing regulation. We suggest that functional gene expression diversity may arise during stress by the coordination of alternative splicing and alternative translation, and that this diversity might contribute to the cellular response to stress. CONCLUSIONS: Together, these results provide novel understanding of the importance of metabolic stress pathways in the intestinal epithelium. Specifically, the importance of cellular stresses in the regulation of immune and defense function, metabolism, proliferation and ISC activity in the intestinal epithelium is highlighted. Furthermore, this work highlights an under-appreciated role played by alternative splicing in shaping the response to stress and reveals a potential mechanism for gene regulation involving coupling of AS and alternative translation start sites.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Mucosa Intestinal/metabolismo , Empalme del ARN , Inanición/genética , Transcriptoma , Animales , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Intrones , Ratones , Organoides , Células Madre/metabolismo , Sitio de Iniciación de la Transcripción
4.
Immunol Cell Biol ; 92(4): 346-53, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24518980

RESUMEN

Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic homeostasis that is highly conserved in evolution. Recent evidence has revealed the existence of a complex interplay between mTOR signalling and immunity. We review here the emerging role of mTOR signalling in the regulation of Toll-like receptor-dependent innate responses and in the activation of T cells and antigen-presenting cells. We also highlight the importance of amino-acid starvation-driven mTOR inhibition in the control of autophagy and intracellular bacterial clearance.


Asunto(s)
Bacterias/inmunología , Inmunidad/inmunología , Transducción de Señal/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Interacciones Huésped-Patógeno , Humanos , Receptores Toll-Like/metabolismo
5.
Cell Microbiol ; 15(10): 1632-41, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23834352

RESUMEN

Cells monitor nutrient availability through several highly conserved pathways that include the mTOR signalling axis regulated by AKT/PI3K, HIF and AMPK, as well as the GCN2/eIF2α integrated stress response pathway that provides cellular adaptation to amino acid starvation. Recent evidence has identified a critical interplay between these nutrient sensing pathways and innate immunity to bacterial pathogens, viruses and parasites. These observations suggest that, in addition to the well-characterized pro-inflammatory signalling mediated by pattern recognition molecules, a metabolic stress programme contributes to shape the global response to pathogens.


Asunto(s)
Aminoácidos/metabolismo , Inmunidad Innata , Transducción de Señal , Estrés Fisiológico , Redes Reguladoras de Genes
6.
Mol Cell Biol ; 42(9): e0024122, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36005752

RESUMEN

Upon pathogen infection, intricate innate signaling cascades are induced to initiate the transcription of immune effectors, including cytokines and chemokines. Transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy genes, was found recently to be a novel regulator of innate immunity in both Caenorhabditis elegans and mammals. Despite TFEB participating in critical mechanisms of pathogen recognition and in the transcriptional response to infection in mammalian macrophages, little is known about its roles in the infected epithelium or infected nonimmune cells in general. Here, we demonstrate that TFEB is activated in nonimmune cells upon infection with bacterial pathogens through a pathway dependent on mTORC1 inhibition and RAG-GTPase activity, reflecting the importance of membrane damage and amino acid starvation responses during infection. Additionally, we present data demonstrating that although TFEB does not affect bacterial killing or load in nonimmune cells, it alters the host transcriptome upon infection, thus promoting an antibacterial transcriptomic landscape. Elucidating the roles of TFEB in infected nonimmune cells and the upstream signaling cascade provides critical insight into understanding how cells recognize and respond to bacterial pathogens.


Asunto(s)
Aminoácidos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Aminoácidos/metabolismo , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Caenorhabditis elegans/metabolismo , Citocinas/metabolismo , Células Epiteliales/metabolismo , GTP Fosfohidrolasas/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
7.
Mol Cell Biol ; 39(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30910794

RESUMEN

Protein degradation pathways are critical for maintaining proper protein dynamics within the cell, and considerable efforts have been made toward the development of therapeutics targeting these catabolic processes. We report here that isoginkgetin, a naturally derived biflavonoid, sensitized cells undergoing nutrient starvation to apoptosis, induced lysosomal stress, and activated the lysosome biogenesis gene TFEB Isoginkgetin treatment led to the accumulation of aggregates of polyubiquitinated proteins that colocalized strongly with the adaptor protein p62, the 20S proteasome, and the endoplasmic reticulum-associated degradation (ERAD) protein UFD1L. Isoginkgetin directly inhibited the chymotrypsin-like, trypsin-like, and caspase-like activities of the 20S proteasome and impaired NF-κB signaling, suggesting that the molecule may display its biological activity in part through proteasome inhibition. Importantly, isoginkgetin was effective at killing multiple myeloma (MM) cell lines in vitro and displayed a higher rate of cell death induction than the clinically approved proteasome inhibitor bortezomib. We propose that isoginkgetin disturbs protein homeostasis, leading to an excess of protein cargo that places a burden on the lysosomes/autophagic machinery, eventually leading to cancer cell death.


Asunto(s)
Biflavonoides/farmacología , Lisosomas/metabolismo , Mieloma Múltiple/metabolismo , Inhibidores de Proteasoma/farmacología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células HCT116 , Células HeLa , Homeostasis/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/efectos de los fármacos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Science ; 365(6448)2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31273097

RESUMEN

Multiple cytosolic innate sensors form large signalosomes after activation, but this assembly needs to be tightly regulated to avoid accumulation of misfolded aggregates. We found that the eIF2α kinase heme-regulated inhibitor (HRI) controls NOD1 signalosome folding and activation through a process requiring eukaryotic initiation factor 2α (eIF2α), the transcription factor ATF4, and the heat shock protein HSPB8. The HRI/eIF2α signaling axis was also essential for signaling downstream of the innate immune mediators NOD2, MAVS, and TRIF but dispensable for pathways dependent on MyD88 or STING. Moreover, filament-forming α-synuclein activated HRI-dependent responses, which suggests that the HRI pathway may restrict toxic oligomer formation. We propose that HRI, eIF2α, and HSPB8 define a novel cytosolic unfolded protein response (cUPR) essential for optimal innate immune signaling by large molecular platforms, functionally homologous to the PERK/eIF2α/HSPA5 axis of the endoplasmic reticulum UPR.


Asunto(s)
Citosol/enzimología , Citosol/inmunología , Inmunidad Innata , Proteínas Serina-Treonina Quinasas/fisiología , Respuesta de Proteína Desplegada/inmunología , Factor de Transcripción Activador 4/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Línea Celular , Chaperón BiP del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/metabolismo , Fibroblastos , Proteínas de Choque Térmico/metabolismo , Humanos , Listeria/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Mutantes , Chaperonas Moleculares/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Proteína Adaptadora de Señalización NOD1/química , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Salmonella/inmunología , Infecciones por Salmonella , Shigella/inmunología , Transducción de Señal
9.
Cell Host Microbe ; 23(5): 644-652.e5, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29746835

RESUMEN

In physiological settings, the complement protein C3 is deposited on all bacteria, including invasive pathogens. However, because experimental host-bacteria systems typically use decomplemented serum to avoid the lytic action of complement, the impact of C3 coating on epithelial cell responses to invasive bacteria remains unexplored. Here, we demonstrate that following invasion, intracellular C3-positive Listeria monocytogenes is targeted by autophagy through a direct C3/ATG16L1 interaction, resulting in autophagy-dependent bacterial growth restriction. In contrast, Shigella flexneri and Salmonella Typhimurium escape autophagy-mediated growth restriction in part through the action of bacterial outer membrane proteases that cleave bound C3. Upon oral infection with Listeria, C3-deficient mice displayed defective clearance at the intestinal mucosa. Together, these results demonstrate an intracellular role of complement in triggering antibacterial autophagy and immunity against intracellular pathogens. Since C3 indiscriminately associates with foreign surfaces, the C3-ATG16L1 interaction may provide a universal mechanism of xenophagy initiation.


Asunto(s)
Autofagia/efectos de los fármacos , Autofagia/inmunología , Bacterias/inmunología , Proteínas Portadoras/inmunología , Complemento C3/inmunología , Complemento C3/farmacología , Interacciones Huésped-Patógeno/inmunología , Animales , Proteínas Relacionadas con la Autofagia , Bacterias/patogenicidad , Proteínas de la Membrana Bacteriana Externa/inmunología , Disentería Bacilar/inmunología , Disentería Bacilar/microbiología , Células Epiteliales , Femenino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Listeria monocytogenes/inmunología , Listeria monocytogenes/patogenicidad , Listeriosis/inmunología , Listeriosis/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Salmonella typhimurium/inmunología , Salmonella typhimurium/patogenicidad , Shigella flexneri/inmunología , Shigella flexneri/patogenicidad , Células THP-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA