Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 666: 839-848, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30818208

RESUMEN

The objective of this field-scale study was to assess the effectiveness of applying an emulsified polycolloid substrate (EPS; containing cane molasses, soybean oil, and surfactants) biobarrier in the control and remediation of a petroleum-hydrocarbon plume in natural waters. An abandoned petrochemical manufacturing facility site was contaminated by benzene and other petroleum products due to a leakage from a storage tank. Because benzene is a petroleum hydrocarbon with a high migration ability, it was used as the target compound in the field-scale study. Batch partition and sorption experiment results indicated that the EPS to water partition coefficient for benzene was 232 mg/mg at 25 °C. This suggests that benzene had a higher sorption affinity to EPS, which decreased the benzene concentrations in groundwater. The EPS solution was pressure-injected into three remediation wells (RWs; 150 L EPS in 800 L groundwater). Groundwater samples were collected from an upgradient background well, two downgradient monitor wells (MWs), and the three RWs for analyses. EPS injection increased total organic carbon (TOC) concentrations (up to 786 mg/L) in groundwater, which also resulted in the formation of anaerobic conditions. An abrupt drop in benzene concentration (from 6.9 to below 0.04 mg/L) was observed after EPS supplementation in the RWs due to both sorption and biodegradation mechanisms. Results show that the EPS supplement increased total viable bacteria and enhanced bioremediation efficiency, which accounted for the observed decrease in benzene concentration. The first-order decay rate in RW1 increased from 0.003 to 0.023 d-1 after EPS application. Injection of EPS resulted in significant growth of indigenous bacteria, and 23 petroleum-hydrocarbon-degrading bacterial species were detected, which enhanced the in situ benzene biodegradation efficiency. Results demonstrate that the EPS biobarrier can effectively contain a petroleum-hydrocarbon plume and prevent its migration to downgradient areas, which reduces the immediate risk presented to downgradient receptors.


Asunto(s)
Bacterias/clasificación , Coloides/análisis , Hidrocarburos/análisis , Microbiota , Contaminación por Petróleo/prevención & control , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/prevención & control , Biodegradación Ambiental , Electroforesis en Gel de Gradiente Desnaturalizante , Emulsiones/análisis , Agua Subterránea/química
2.
Chemosphere ; 219: 444-455, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30551111

RESUMEN

Emulsified polycolloid substrate (EPS) was developed and applied in situ to form a biobarrier for the containment and enhanced bioremediation of a petroleum-hydrocarbon plume. EPS had a negative zeta potential (-35.7 mv), which promoted its even distribution after injection. Batch and column experiments were performed to evaluate the effectiveness of EPS on toluene containment and biodegradation. The EPS-to-water partition coefficient for toluene (target compound) was 943. Thus, toluene had a significant sorption affinity to EPS, which caused reduced toluene concentration in water phase in the EPS/water system. Groundwater containing toluene (18 mg/L) was pumped into the three-column system at a flow rate of 0.28 mL/min, while EPS was injected into the second column to form a biobarrier. A significant reduction of toluene concentration to 0.1 mg/L was observed immediately after EPS injection. This indicates that EPS could effectively contain toluene plume and prevent its further migration to farther downgradient zone. Approximately 99% of toluene was removed after 296 PVs of operation via sorption, natural attenuation, and EPS-enhanced biodegradation. Increase in total organic carbon and bacteria were also observed after EPS supplement. Supplement of EPS resulted in a growth of petroleum-hydrocarbon degrading bacteria, which enhanced the toluene biodegradation.


Asunto(s)
Biodegradación Ambiental , Emulsiones/química , Agua Subterránea/química , Hidrocarburos/análisis , Petróleo/análisis , Bacterias/metabolismo , Agua Subterránea/microbiología , Tolueno/metabolismo , Contaminantes Químicos del Agua/análisis
3.
Chemosphere ; 194: 666-674, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29245133

RESUMEN

The Love River and Ho-Jin River, two major urban rivers in Kaohsiung City, Taiwan, are moderately to heavily polluted because different types of improperly treated wastewaters are discharged into the rivers. In this study, sediment and river water samples were collected from two rivers to investigate the river water quality and accumulation of polycyclic aromatic hydrocarbons (PAHs) in sediments. The spatial distribution, composition, and source appointment of PAHs of the sediments were examined. The impacts of PAHs on ecological system were assessed using toxic equivalence quotient (TEQ) of potentially carcinogenic PAHs (TEQcarc) and sediment quality guidelines. The average PAHs concentrations ranged from 2161 ng/g in Love River sediment to 160 ng/g in Ho-Jin River sediment. This could be due to the fact that Love River Basin had much higher population density and pyrolytic activities. High-ring PAHs (4-6 rings) contributed to 59-90% of the total PAHs concentrations. Benzo(a)pyrene (BaP) had the highest toxic equivalence quotient (up to 188 ng TEQ/g). Moreover, the downstream sediments contained higher TEQ of total TPHs than midstream and upstream sediment samples. The PAHs were adsorbed onto the fine particles with high organic content. Results from diagnostic ratio analyses indicate that the PAHs in two urban river sediments might originate from oil/coal combustion, traffic-related emissions, and waste combustion (pyrogenic activities). Future pollution prevention and management should target the various industries, incinerators, and transportation emission in this region to reduce the PAHs pollution.


Asunto(s)
Sedimentos Geológicos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Benzo(a)pireno/análisis , China , Ciudades , Ecosistema , Monitoreo del Ambiente/métodos , Contaminación Ambiental/análisis , Sedimentos Geológicos/química , Incineración , Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/farmacología , Taiwán , Emisiones de Vehículos/análisis
4.
Chemosphere ; 200: 266-273, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29494907

RESUMEN

Utilization of bacterial volatilization can be problematic to remediate mercury (Hg)-contaminated soils because most of the Hg in soils is bound to soil particles. The objective of this study was to develop a two-stage system (chemical extraction followed by microbial reduction) for Hg-contaminated soil remediation. The tasks were to (1) select the extraction reagents for Hg extraction, (2) assess the effects of extraction reagents on the growth of Hg-reducing bacterial strains, and (3) evaluate the effectiveness of Ca2+ and Mg2+ addition on merA gene (Hg reductase) induction. Bacterial inhibition was observed with the addition of 0.1 M ethylenediaminetetraacetic acid or citric acid. Up to 65% of Hg was biotransformed (Hg concentration = 69 mg/kg) from the soils after a 24 h extraction using 0.5 M ammonium thiosulfate. Ca2+ and Mg2+ were selected because they have the same electric charge as Hg and the studied groundwater contained high concentrations of Ca2+ and Mg2+. Results showed that the addition of 200 mg/L Ca2+ or 650 mg/L Mg2+ could reach effective merA induction. In the two-stage experiment, 120 mg/kg Hg-contaminated soils were extracted with 2 rounds of extraction processes for 10 h using 0.5 M ammonium thiosulfate. Approximately 77% of Hg was extracted from the soils after the first-step extraction process. Up to 81% of Hg2+ was transformed from the washing solution via the biotransformation processes with Enterobacter cloacae addition and Ca2+ and Mg2+ supplementation. The two-stage remedial system has the potential to be developed into a practical technology to remediate Hg-contaminated sites.


Asunto(s)
Biotransformación , Calcio/química , Contaminación Ambiental/prevención & control , Magnesio/química , Mercurio/química , Contaminantes del Suelo/química , Tiosulfatos/química , Enterobacter cloacae , Agua Subterránea , Mercurio/análisis , Oxidorreductasas/metabolismo , Suelo/química , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA