Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Acta Neuropathol ; 129(1): 21-37, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25432317

RESUMEN

The key role of APP in the pathogenesis of Alzheimer disease is well established. However, postnatal lethality of double knockout mice has so far precluded the analysis of the physiological functions of APP and the APLPs in the brain. Previously, APP family proteins have been implicated in synaptic adhesion, and analysis of the neuromuscular junction of constitutive APP/APLP2 mutant mice showed deficits in synaptic morphology and neuromuscular transmission. Here, we generated animals with a conditional APP/APLP2 double knockout (cDKO) in excitatory forebrain neurons using NexCre mice. Electrophysiological recordings of adult NexCre cDKOs indicated a strong synaptic phenotype with pronounced deficits in the induction and maintenance of hippocampal LTP and impairments in paired pulse facilitation, indicating a possible presynaptic deficit. These deficits were also reflected in impairments in nesting behavior and hippocampus-dependent learning and memory tasks, including deficits in Morris water maze and radial maze performance. Moreover, while no gross alterations of brain morphology were detectable in NexCre cDKO mice, quantitative analysis of adult hippocampal CA1 neurons revealed prominent reductions in total neurite length, dendritic branching, reduced spine density and reduced spine head volume. Strikingly, the impairment of LTP could be selectively rescued by acute application of exogenous recombinant APPsα, but not APPsß, indicating a crucial role for APPsα to support synaptic plasticity of mature hippocampal synapses on a rapid time scale. Collectively, our analysis reveals an essential role of APP family proteins in excitatory principal neurons for mediating normal dendritic architecture, spine density and morphology, synaptic plasticity and cognition.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/fisiopatología , Plasticidad Neuronal/fisiología , Fragmentos de Péptidos/metabolismo , Sinapsis/fisiología , Precursor de Proteína beta-Amiloide/genética , Animales , Dendritas/patología , Dendritas/fisiología , Femenino , Hipocampo/patología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones Noqueados , Actividad Motora/fisiología , Neuritas/patología , Neuritas/fisiología , Fragmentos de Péptidos/genética , Proteínas Recombinantes/metabolismo , Memoria Espacial/fisiología , Sinapsis/patología
2.
BMC Genomics ; 12: 160, 2011 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-21435241

RESUMEN

BACKGROUND: The ß-amyloid precursor protein (APP) and the related ß-amyloid precursor-like proteins (APLPs) undergo complex proteolytic processing giving rise to several fragments. Whereas it is well established that Aß accumulation is a central trigger for Alzheimer's disease, the physiological role of APP family members and their diverse proteolytic products is still largely unknown. The secreted APPsα ectodomain has been shown to be involved in neuroprotection and synaptic plasticity. The γ-secretase-generated APP intracellular domain (AICD) functions as a transcriptional regulator in heterologous reporter assays although its role for endogenous gene regulation has remained controversial. RESULTS: To gain further insight into the molecular changes associated with knockout phenotypes and to elucidate the physiological functions of APP family members including their proposed role as transcriptional regulators, we performed DNA microarray transcriptome profiling of prefrontal cortex of adult wild-type (WT), APP knockout (APP-/-), APLP2 knockout (APLP2-/-) and APPsα knockin mice (APPα/α) expressing solely the secreted APPsα ectodomain. Biological pathways affected by the lack of APP family members included neurogenesis, transcription, and kinase activity. Comparative analysis of transcriptome changes between mutant and wild-type mice, followed by qPCR validation, identified co-regulated gene sets. Interestingly, these included heat shock proteins and plasticity-related genes that were both down-regulated in knockout cortices. In contrast, we failed to detect significant differences in expression of previously proposed AICD target genes including Bace1, Kai1, Gsk3b, p53, Tip60, and Vglut2. Only Egfr was slightly up-regulated in APLP2-/- mice. Comparison of APP-/- and APPα/α with wild-type mice revealed a high proportion of co-regulated genes indicating an important role of the C-terminus for cellular signaling. Finally, comparison of APLP2-/- on different genetic backgrounds revealed that background-related transcriptome changes may dominate over changes due to the knockout of a single gene. CONCLUSION: Shared transcriptome profiles corroborated closely related physiological functions of APP family members in the adult central nervous system. As expression of proposed AICD target genes was not altered in adult cortex, this may indicate that these genes are not affected by lack of APP under resting conditions or only in a small subset of cells.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Perfilación de la Expresión Génica , Corteza Prefrontal/metabolismo , Animales , Análisis por Conglomerados , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos
3.
Genesis ; 48(3): 200-6, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20140888

RESUMEN

Proteolytical cleavage of the beta-amyloid precursor protein (APP) generates beta-amyloid, which is deposited in the brains of patients suffering from Alzheimer's disease (AD). Despite the well-established key role of APP for AD pathogenesis, the physiological function of APP and its close homologues APLP1 and APLP2 remains poorly understood. Previously, we generated APP(-/-) mice that proved viable, whereas APP(-/-)APLP2(-/-) mice and triple knockouts died shortly after birth, likely due to deficits of neuromuscular synaptic transmission. Here, we generated conditional knockout alleles for both APP and APLP2 in which the promoter and exon1 were flanked by loxP sites. No differences in expression were detectable between wt and floxed alleles, whereas null alleles were obtained upon crossing with Cre-transgenic deleter mice. These mice will now allow for tissue and time-point controlled knockout of both genes.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Marcación de Gen/métodos , Modelos Genéticos , Alelos , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Animales Recién Nacidos , Southern Blotting , Western Blotting , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Miembro Anterior/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Fuerza de la Mano , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Ratones Transgénicos , Tamaño de los Órganos
5.
J Neurosci ; 25(11): 2865-73, 2005 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-15772346

RESUMEN

The Drosophila Swiss cheese (sws) mutant is characterized by progressive degeneration of the adult nervous system, glial hyperwrapping, and neuronal apoptosis. The Swiss cheese protein (SWS) shares 39% sequence identity with human neuropathy target esterase (NTE), and a brain-specific deletion of SWS/NTE in mice causes a similar pattern of progressive neuronal degeneration. NTE reacts with organophosphate compounds that cause a paralyzing axonal degeneration in humans and has been shown to degrade endoplasmic reticulum-associated phosphatidylcholine (PtdCho) in cultured mammalian cells. However, its function within the nervous system has remained unknown. Here, we show that both the fly and mouse SWS proteins can rescue the defects that arise in sws mutant flies, whereas a point mutation in the proposed active site cannot restore SWS function. Overexpression of catalytically active SWS caused formation of abnormal intracellular membraneous structures and cell death. Cell-specific expression revealed that not only neurons but also glia depend autonomously on SWS. In wild-type flies, endogenous SWS was detected by immmunohistochemistry in the endoplasmic reticulum (the primary site of PtdCho processing) of neurons and in some glia. sws mutant flies lacked NTE-like esterase activity and had increased levels of PtdCho. Conversely, overexpression of SWS resulted in increased esterase activity and reduced PtdCho. We conclude that SWS is essential for membrane lipid homeostasis and cell survival in both neurons and glia of the adult Drosophila brain and that NTE may play an analogous role in vertebrates.


Asunto(s)
Proteínas de Drosophila/deficiencia , Drosophila/citología , Esterasas/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Neuroglía/fisiología , Neuronas/fisiología , Animales , Animales Modificados Genéticamente , Western Blotting/métodos , Muerte Celular/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Regulación de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica/métodos , Metabolismo de los Lípidos , Ratones , Microscopía Electrónica de Transmisión/métodos , Mutagénesis/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuroglía/ultraestructura , Neuronas/ultraestructura , Fenotipo , Esteroles/metabolismo , Vacuolas/metabolismo
6.
J Neurosci ; 24(16): 3899-906, 2004 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-15102905

RESUMEN

Beta-amyloid peptides that are cleaved from the amyloid precursor protein (APP) play a critical role in Alzheimer's disease (AD) pathophysiology. Here, we show that in Drosophila, the targeted expression of the key genes of AD, APP, the beta-site APP-cleaving enzyme BACE, and the presenilins led to the generation of beta-amyloid plaques and age-dependent neurodegeneration as well as to semilethality, a shortened life span, and defects in wing vein development. Genetic manipulations or pharmacological treatments with secretase inhibitors influenced the activity of the APP-processing proteases and modulated the severity of the phenotypes. This invertebrate model of amyloid plaque pathology demonstrates Abeta-induced neurodegeneration as a basic biological principle and may allow additional genetic analyses of the underlying molecular pathways.


Asunto(s)
Enfermedad de Alzheimer/patología , Modelos Animales de Enfermedad , Drosophila , Trastornos Heredodegenerativos del Sistema Nervioso/patología , Placa Amiloide/patología , Factores de Edad , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Animales Modificados Genéticamente , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Progresión de la Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Endopeptidasas/metabolismo , Marcación de Gen , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Fenotipo , Células Fotorreceptoras de Invertebrados/patología , Placa Amiloide/metabolismo , Presenilinas , Procesamiento Proteico-Postraduccional/fisiología , Retina/metabolismo , Retina/patología , Tasa de Supervivencia , Transgenes
7.
EMBO J ; 21(23): 6367-76, 2002 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-12456644

RESUMEN

The novel Drosophila mutant löchrig (loe) shows progressive neurodegeneration and neuronal cell death, in addition to a low level of cholesterol ester. loe affects a specific isoform of the gamma-subunit of AMP-activated protein kinase (AMPK), a negative regulator of hydroxymethylglutaryl (HMG)-CoA reductase and cholesterol synthesis in vertebrates. Although Drosophila cannot synthesize cholesterol de novo, the regulatory role of fly AMPK on HMG-CoA reductase is conserved. The loe phenotype is modified by the level of HMG-CoA reductase and suppressed by the inhibition of this enzyme by statin, which has been used for the treatment of Alzheimer patients. In addition, the degenerative phenotype of loe is enhanced by a mutation in amyloid precursor protein-like (APPL), the fly homolog of the human amyloid precursor protein involved in Alzheimer's disease. Western analysis revealed that the loe mutation reduces APPL processing, whereas overexpression of Loe increases it. These results describe a novel function of AMPK in neurodegeneration and APPL/APP processing which could be mediated through HMG-CoA reductase and cholesterol ester.


Asunto(s)
Colesterol/metabolismo , Proteínas de Drosophila , Proteínas de la Membrana , Proteínas del Tejido Nervioso/metabolismo , Proteínas Quinasas/genética , Animales , Drosophila/genética , Drosophila/metabolismo , Mutación , Neuronas/metabolismo , Neuronas/patología , Proteínas Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA