Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 358: 120899, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636421

RESUMEN

Floodplains provide an extraordinary quantity and quality of ecosystem services (ES) but are among the most threatened ecosystems worldwide. The uses and transformations of floodplains differ widely within and between regions. In recent decades, the diverse pressures and requirements for flood protection, drinking water resource protection, biodiversity, and adaptation to climate change have shown that multi-functional floodplain management is necessary. Such an integrative approach has been hampered by the various interests of different sectors of society, as represented by multiple stakeholders and legal principles. We present an innovative framework for integrated floodplain management building up on ES multi-functionality and stakeholder involvement, forming a scientifically based decision-support to prioritize adaptive management measures responding at the basin and local scales. To demonstrate its potential and limitations, we applied this cross-scaled approach in the world's most international and culturally diverse basin, the Danube River Basin in Europe. We conducted large-scale evaluations of anthropogenic pressures and ES capacities on the one hand and participatory modelling of the local socio-ecohydrological systems on the other hand. Based on our assessments of 14 ES and 8 pressures, we recommend conservation measures along the lower and middle Danube, restoration measures along the upper-middle Danube and Sava, and mitigation measures in wide parts of the Yantra, Tisza and upper Danube rivers. In three case study areas across the basin, stakeholder perceptions were generally in line with the large-scale evaluations on ES and pressures. The positive outcomes of jointly modelled local measures and large-scale synergistic ES relationships suggest that multi-functionality can be enhanced across scales. Trade-offs were mainly present with terrestrial provisioning ES at the basin scale and locally with recreational activities. Utilizing the commonalities between top-down prioritizations and bottom-up participatory approaches and learning from their discrepancies could make ecosystem-based management more effective and inclusive.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Ríos , Cambio Climático , Inundaciones , Biodiversidad
2.
Sci Total Environ ; 892: 164727, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37290658

RESUMEN

Excess nitrogen (N) from agricultural sources is a major contributor to the water pollution of rivers in Europe. Floodplains are of tremendous importance as they can permanently remove nitrate (NO3) from the environment by releasing reactive N to the atmosphere in its gaseous forms (N2O, N2) during denitrification. However, the quantitative assessment of this ecosystem function is still challenging, particularly on the national level. In this study, we modeled the potential of NO3-N removal through microbial denitrification in soils of the active floodplains of the river Elbe and river Rhine in Germany. We combined laboratory measurements of soil denitrification potentials with straightforward modelling data, covering the average inundation duration from six study areas, to improve an existing Germany-wide proxy-based approach (PBAe) on NO3-N retention potential. The PBAe estimates this potential to be 30-150 kg NO3-N ha-1 yr-1. However, with soil pH and Floodplain Status Category identified as essential parameters for the proxies, the improved PBA (PBAi) yields a removal potential of 5-480 kg N ha-1 yr-1. To account for these parameters, we applied scaling factors using a bonus-malus system with a base value of 10-120 N ha-1 yr-1. Upscaling the determined proxies of the PBAi to the entire active floodplains of the river Elbe and river Rhine results in similarly high NO3-N retention sums of ~7000 t yr-1 in spite of very different retention area sizes, strengthening the argument for area availability as the primary objective of restoration efforts. Although PBAs are always subject to uncertainty, the PBAi enables a more differentiated spatial quantification of denitrification because local key controlling parameters are included. Hence, the PBAi is an innovative and robust approach to quantify denitrification in floodplain soils, supporting a better assessment of ecosystem services for decision-making on floodplain restoration.


Asunto(s)
Desnitrificación , Ecosistema , Suelo , Agricultura , Nitrógeno/análisis , Nitratos , Ríos , Toma de Decisiones
3.
Sci Total Environ ; 843: 156879, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35753454

RESUMEN

Floodplains remove nitrate from rivers through denitrification and thus improve water quality. The Danube River Basin (DRB) has been affected by elevated nitrate concentrations and a massive loss of intact floodplains and the ecosystem services they provide. Restoration measures intend to secure and improve these valuable ecosystem services, including nitrate removal. Our study provides the first large-scale estimate of the function of large active floodplains in the DRB to remove riverine nitrate and assesses the contribution of reconnection measures. We applied a nutrient emission model in 6 river systems and coupled it with denitrification and flooding models which we adapted to floodplains. The floodplains have the capacity to eliminate about 33,200 t nitrate-N annually, which corresponds to 6.5 % of the total nitrogen emissions in the DRB. More nitrate is removed in-stream at regular flow conditions than in floodplain soils during floods. However, increasing frequently inundated floodplain areas reveals greater potential for improvement than increasing the channel network. In total, we estimate that 14.5 % more nitrate can be removed in reconnected floodplains. The largest share of nitrogen emissions is retained in the Yantra and Tisza floodplains, where reconnections are expected to have the greatest impact on water quality. In absolute numbers, the floodplains of the lower Danube convert the greatest quantities of nitrate, driven by the high input loads. These estimates are subject to uncertainties due to the heterogeneity of the available input data. Still, our results are within the range of similar studies. Reconnections of large floodplains in the DRB can, thus, make a distinct contribution to improving water quality. A better representation of the spatial configuration of water quality functions and the effect of floodplain reconnections may support the strategic planning of such to achieve multiple benefits and environmental targets.


Asunto(s)
Nitratos , Ríos , Ecosistema , Inundaciones , Nitrógeno
4.
Sci Total Environ ; 801: 149619, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34438150

RESUMEN

River systems have undergone a massive transformation since the Anthropocene. The natural properties of river systems have been drastically altered and reshaped, limiting the use of management frameworks, their scientific knowledge base and their ability to provide adequate solutions for current problems and those of the future, such as climate change, biodiversity crisis and increased demands for water resources. To address these challenges, a socioecologically driven research agenda for river systems that complements current approaches is needed and proposed. The implementation of the concepts of social metabolism and the colonisation of natural systems into existing concepts can provide a new basis to analyse the coevolutionary coupling of social systems with ecological and hydrological (i.e., 'socio-ecohydrological') systems within rivers. To operationalize this research agenda, we highlight four initial core topics defined as research clusters (RCs) to address specific system properties in an integrative manner. The colonisation of natural systems by social systems is seen as a significant driver of the transformation processes in river systems. These transformation processes are influenced by connectivity (RC 1), which primarily addresses biophysical aspects and governance (RC 2), which focuses on the changes in social systems. The metabolism (RC 3) and vulnerability (RC 4) of the social and natural systems are significant aspects of the coupling of social systems and ecohydrological systems with investments, energy, resources, services and associated risks and impacts. This socio-ecohydrological research agenda complements other recent approaches, such as 'socio-ecological', 'socio-hydrological' or 'socio-geomorphological' systems, by focusing on the coupling of social systems with natural systems in rivers and thus, by viewing the socioeconomic features of river systems as being just as important as their natural characteristics. The proposed research agenda builds on interdisciplinarity and transdisciplinarity and requires the implementation of such programmes into the education of a new generation of river system scientists, managers and engineers who are aware of the transformation processes and the coupling between systems.


Asunto(s)
Ríos , Recursos Hídricos , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Predicción , Hidrología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA