Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 109(42): 16847-51, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-22967510

RESUMEN

The oscillator of the circadian clock of cyanobacteria is composed of three proteins, KaiA, KaiB, and KaiC, which together generate a self-sustained ∼24-h rhythm of phosphorylation of KaiC. The mechanism propelling this oscillator has remained elusive, however. We show that stacking interactions between the CI and CII rings of KaiC drive the transition from the phosphorylation-specific KaiC-KaiA interaction to the dephosphorylation-specific KaiC-KaiB interaction. We have identified the KaiB-binding site, which is on the CI domain. This site is hidden when CI domains are associated as a hexameric ring. However, stacking of the CI and CII rings exposes the KaiB-binding site. Because the clock output protein SasA also binds to CI and competes with KaiB for binding, ring stacking likely regulates clock output. We demonstrate that ADP can expose the KaiB-binding site in the absence of ring stacking, providing an explanation for how it can reset the clock.


Asunto(s)
Proteínas Bacterianas/metabolismo , Relojes Circadianos/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Cianobacterias/fisiología , Modelos Moleculares , Adenosina Difosfato/metabolismo , Proteínas Bacterianas/química , Sitios de Unión/genética , Cromatografía de Afinidad , Cromatografía en Gel , Péptidos y Proteínas de Señalización del Ritmo Circadiano/química , Clonación Molecular , Cianobacterias/metabolismo , Escherichia coli , Espectroscopía de Resonancia Magnética , Fosforilación , Espectrometría de Fluorescencia
2.
Proc Natl Acad Sci U S A ; 108(35): 14431-6, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21788479

RESUMEN

In the cyanobacterial circadian oscillator, KaiA and KaiB alternately stimulate autophosphorylation and autodephosphorylation of KaiC with a periodicity of approximately 24 h. KaiA activates autophosphorylation by selectively capturing the A loops of KaiC in their exposed positions. The A loops and sites of phosphorylation, residues S431 and T432, are located in the CII ring of KaiC. We find that the flexibility of the CII ring governs the rhythm of KaiC autophosphorylation and autodephosphorylation and is an example of dynamics-driven protein allostery. KaiA-induced autophosphorylation requires flexibility of the CII ring. In contrast, rigidity is required for KaiC-KaiB binding, which induces a conformational change in KaiB that enables it to sequester KaiA by binding to KaiA's linker. Autophosphorylation of the S431 residues around the CII ring stabilizes the CII ring, making it rigid. In contrast, autophosphorylation of the T432 residues offsets phospho-S431-induced rigidity to some extent. In the presence of KaiA and KaiB, the dynamic states of the CII ring of KaiC executes the following circadian rhythm: CII STflexible → CIISpTflexible → CIIpSpTrigid → CIIpSTvery-rigid → CIISTflexible. Apparently, these dynamic states govern the pattern of phosphorylation, ST → SpT → pSpT → pST → ST. CII-CI ring-on-ring stacking is observed when the CII ring is rigid, suggesting a mechanism through which the ATPase activity of the CI ring is rhythmically controlled. SasA, a circadian clock-output protein, binds to the CI ring. Thus, rhythmic ring stacking may also control clock-output pathways.


Asunto(s)
Proteínas Bacterianas/fisiología , Relojes Circadianos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/fisiología , Cianobacterias/fisiología , Proteínas Bacterianas/química , Péptidos y Proteínas de Señalización del Ritmo Circadiano/química , Simulación de Dinámica Molecular , Fosforilación , Fosfotransferasas/fisiología
3.
BMC Evol Biol ; 11: 295, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21985526

RESUMEN

BACKGROUND: Reconstructing the higher relationships of pulmonate gastropods has been difficult. The use of morphology is problematic due to high homoplasy. Molecular studies have suffered from low taxon sampling. Forty-eight complete mitochondrial genomes are available for gastropods, ten of which are pulmonates. Here are presented the new complete mitochondrial genomes of the ten following species of pulmonates: Salinator rhamphidia (Amphiboloidea); Auriculinella bidentata, Myosotella myosotis, Ovatella vulcani, and Pedipes pedipes (Ellobiidae); Peronia peronii (Onchidiidae); Siphonaria gigas (Siphonariidae); Succinea putris (Stylommatophora); Trimusculus reticulatus (Trimusculidae); and Rhopalocaulis grandidieri (Veronicellidae). Also, 94 new pulmonate-specific primers across the entire mitochondrial genome are provided, which were designed for amplifying entire mitochondrial genomes through short reactions and closing gaps after shotgun sequencing. RESULTS: The structural features of the 10 new mitochondrial genomes are provided. All genomes share similar gene orders. Phylogenetic analyses were performed including the 10 new genomes and 17 genomes from Genbank (outgroups, opisthobranchs, and other pulmonates). Bayesian Inference and Maximum Likelihood analyses, based on the concatenated amino-acid sequences of the 13 protein-coding genes, produced the same topology. The pulmonates are paraphyletic and basal to the opisthobranchs that are monophyletic at the tip of the tree. Siphonaria, traditionally regarded as a basal pulmonate, is nested within opisthobranchs. Pyramidella, traditionally regarded as a basal (non-euthyneuran) heterobranch, is nested within pulmonates. Several hypotheses are rejected, such as the Systellommatophora, Geophila, and Eupulmonata. The Ellobiidae is polyphyletic, but the false limpet Trimusculus reticulatus is closely related to some ellobiids. CONCLUSIONS: Despite recent efforts for increasing the taxon sampling in euthyneuran (opisthobranchs and pulmonates) molecular phylogenies, several of the deeper nodes are still uncertain, because of low support values as well as some incongruence between analyses based on complete mitochondrial genomes and those based on individual genes (18S, 28S, 16S, CO1). Additional complete genomes are needed for pulmonates (especially for Williamia, Otina, and Smeagol), as well as basal heterobranchs closely related to euthyneurans. Increasing the number of markers for gastropod (and more broadly mollusk) phylogenetics also is necessary in order to resolve some of the deeper nodes -although clearly not an easy task. Step by step, however, new relationships are being unveiled, such as the close relationships between the false limpet Trimusculus and ellobiids, the nesting of pyramidelloids within pulmonates, and the close relationships of Siphonaria to sacoglossan opisthobranchs. The additional genomes presented here show that some species share an identical mitochondrial gene order due to convergence.


Asunto(s)
Gastrópodos/genética , Genoma Mitocondrial/genética , Filogenia , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Teorema de Bayes , Cartilla de ADN/genética , Funciones de Verosimilitud , Modelos Genéticos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Especificidad de la Especie
4.
Protein Sci ; 29(11): 2274-2280, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32949024

RESUMEN

Biofilms are accumulations of microorganisms embedded in extracellular matrices that protect against external factors and stressful environments. Cyanobacterial biofilms are ubiquitous and have potential for treatment of wastewater and sustainable production of biofuels. But the underlying mechanisms regulating cyanobacterial biofilm formation are unclear. Here, we report the solution NMR structure of a protein, Se0862, conserved across diverse cyanobacterial species and involved in regulation of biofilm formation in the cyanobacterium Synechococcus elongatus PCC 7942. Se0862 is a class α+ß protein with ααßßßßαα topology and roll architecture, consisting of a four-stranded ß-sheet that is flanked by four α-helices on one side. Conserved surface residues constitute a hydrophobic pocket and charged regions that are likely also present in Se0862 orthologs.


Asunto(s)
Proteínas Bacterianas/química , Biopelículas , Synechococcus , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Synechococcus/química , Synechococcus/fisiología
5.
Science ; 355(6330): 1174-1180, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28302851

RESUMEN

Circadian clocks are ubiquitous timing systems that induce rhythms of biological activities in synchrony with night and day. In cyanobacteria, timing is generated by a posttranslational clock consisting of KaiA, KaiB, and KaiC proteins and a set of output signaling proteins, SasA and CikA, which transduce this rhythm to control gene expression. Here, we describe crystal and nuclear magnetic resonance structures of KaiB-KaiC,KaiA-KaiB-KaiC, and CikA-KaiB complexes. They reveal how the metamorphic properties of KaiB, a protein that adopts two distinct folds, and the post-adenosine triphosphate hydrolysis state of KaiC create a hub around which nighttime signaling events revolve, including inactivation of KaiA and reciprocal regulation of the mutually antagonistic signaling proteins, SasA and CikA.


Asunto(s)
Proteínas Bacterianas/química , Relojes Circadianos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/química , Cianobacterias/fisiología , Proteínas Quinasas/química , Adenosina Trifosfato/química , Proteínas Bacterianas/ultraestructura , Péptidos y Proteínas de Señalización del Ritmo Circadiano/ultraestructura , Cristalografía por Rayos X , Cianobacterias/enzimología , Hidrólisis , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Proteínas Quinasas/ultraestructura , Multimerización de Proteína
6.
J Interv Card Electrophysiol ; 46(3): 275-85, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26936265

RESUMEN

BACKGROUND: The cryoballoon catheter has proven to be both safe and effective when used for pulmonary vein (PV) isolation in patients with paroxysmal atrial fibrillation (AF). More recently, the cryoballoon catheter has demonstrated the ability to create durable, transmural, and large areas of PV ablation. However, persistent and long-standing persistent AF can require additional cardiac substrate modification(s) before a patient is returned to normal sinus rhythm. Yet, no study has reported the techniques necessary to achieve extra-PV lesion sets using the cryoballoon catheter. METHODS: Cryoballoon ablation was completed in 225 patients with varying degrees of AF disease. In several cases, the balloon was used for more than PV isolation. This study examines the 11 anatomical cardiac locations where extra-PV lesion sets were utilized. RESULTS: This study demonstrates that these extra-PV ablations can be done safely with the balloon catheter (3.6 % total complication rate). The 12-month efficacy (freedom from all atrial arrhythmia) using these techniques was 88 % in 88 patients with paroxysmal AF, 71 % in 75 patients with persistent AF, and 55 % in 62 patients with long-standing persistent AF. While using this protocol, mean procedure time was 2.2 ± 0.6 h, and average fluoroscopy time was 4.2 ± 2.2 min. CONCLUSIONS: The cryoballoon catheter can be used to make effective and safe extra-PV lesions. However, these techniques will need to be validated in more multi-center studies with review of complication rates and long-term freedom from AF.


Asunto(s)
Fibrilación Atrial/epidemiología , Fibrilación Atrial/cirugía , Ablación por Catéter/instrumentación , Ablación por Catéter/estadística & datos numéricos , Crioterapia/instrumentación , Crioterapia/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , Fibrilación Atrial/diagnóstico , Ablación por Catéter/métodos , Enfermedad Crónica , Crioterapia/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tempo Operativo , Prevalencia , Venas Pulmonares/cirugía , Factores de Riesgo , Resultado del Tratamiento , Estados Unidos/epidemiología
7.
Science ; 349(6245): 324-8, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26113641

RESUMEN

Organisms are adapted to the relentless cycles of day and night, because they evolved timekeeping systems called circadian clocks, which regulate biological activities with ~24-hour rhythms. The clock of cyanobacteria is driven by a three-protein oscillator composed of KaiA, KaiB, and KaiC, which together generate a circadian rhythm of KaiC phosphorylation. We show that KaiB flips between two distinct three-dimensional folds, and its rare transition to an active state provides a time delay that is required to match the timing of the oscillator to that of Earth's rotation. Once KaiB switches folds, it binds phosphorylated KaiC and captures KaiA, which initiates a phase transition of the circadian cycle, and it regulates components of the clock-output pathway, which provides the link that joins the timekeeping and signaling functions of the oscillator.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/química , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Ritmo Circadiano , Synechococcus/fisiología , Proteínas Bacterianas/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Fosforilación , Pliegue de Proteína , Estructura Secundaria de Proteína , Synechococcus/metabolismo
8.
J Mol Biol ; 426(2): 389-402, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24112939

RESUMEN

The circadian oscillator of cyanobacteria is composed of only three proteins, KaiA, KaiB, and KaiC. Together, they generate an autonomous ~24-h biochemical rhythm of phosphorylation of KaiC. KaiA stimulates KaiC phosphorylation by binding to the so-called A-loops of KaiC, whereas KaiB sequesters KaiA in a KaiABC complex far away from the A-loops, thereby inducing KaiC dephosphorylation. The switch from KaiC phosphorylation to dephosphorylation is initiated by the formation of the KaiB-KaiC complex, which occurs upon phosphorylation of the S431 residues of KaiC. We show here that formation of the KaiB-KaiC complex is promoted by KaiA, suggesting cooperativity in the initiation of the dephosphorylation complex. In the KaiA-KaiB interaction, one monomeric subunit of KaiB likely binds to one face of a KaiA dimer, leaving the other face unoccupied. We also show that the A-loops of KaiC exist in a dynamic equilibrium between KaiA-accessible exposed and KaiA-inaccessible buried positions. Phosphorylation at the S431 residues of KaiC shift the A-loops toward the buried position, thereby weakening the KaiA-KaiC interaction, which is expected to be an additional mechanism promoting formation of the KaiABC complex. We also show that KaiB and the clock-output protein SasA compete for overlapping binding sites, which include the B-loops on the CI ring of KaiC. KaiA strongly shifts the competition in KaiB's favor. Thus, in addition to stimulating KaiC phosphorylation, it is likely that KaiA plays roles in switching KaiC from phosphorylation to dephosphorylation, as well as regulating clock output.


Asunto(s)
Proteínas Bacterianas/metabolismo , Relojes Circadianos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Cianobacterias/fisiología , Fosfotransferasas/metabolismo , Multimerización de Proteína , Secuencia de Aminoácidos , Cianobacterias/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional
9.
Integr Comp Biol ; 53(1): 93-102, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23667047

RESUMEN

The most well-understood circadian clock at the level of molecular mechanisms is that of cyanobacteria. This overview is on how solution-state nuclear magnetic resonance (NMR) spectroscopy has contributed to this understanding. By exciting atomic spin-½ nuclei in a strong magnetic field, NMR obtains information on their chemical environments, inter-nuclear distances, orientations, and motions. NMR protein samples are typically aqueous, often at near-physiological pH, ionic strength, and temperature. The level of information obtainable by NMR depends on the quality of the NMR sample, by which we mean the solubility and stability of proteins. Here, we use examples from our laboratory to illustrate the advantages and limitations of the technique.


Asunto(s)
Relojes Circadianos/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Cianobacterias/fisiología , Espectroscopía de Resonancia Magnética/métodos , Cianobacterias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA