Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 714: 149940, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38677008

RESUMEN

Orthostatic hypotension (OH) is a common condition. Many potential etiologies of OH have been identified, but in clinical practice the underlying cause of OH is often unknown. In the present study, we identified a novel and extraordinary etiology of OH. We describe a first case of acquired severe OH with syncope, and the female patient had extremely low levels of catecholamines and serotonin in plasma, urine and cerebrospinal fluid (CSF). Her clinical and biochemical evidence showed a deficiency of the enzyme aromatic l-amino acid decarboxylase (AADC), which converts l-DOPA to dopamine, and 5-hydroxytryptophan to serotonin, respectively. The consequence of pharmacologic stimulation of catecholaminergic nerves and radionuclide examination revealed her catecholaminergic nerves denervation. Moreover, we found that the patient's serum showed presence of autoantibodies against AADC, and that isolated peripheral blood mononuclear cells (PBMCs) from the patient showed cytokine-induced toxicity against AADC. These observations suggest that her autoimmunity against AADC is highly likely to cause toxicity to adrenal medulla and catecholaminergic nerves which contain AADC, resulting in hypocatecholaminemia and severe OH. Administration of vitamin B6, an essential cofactor of AADC, enhanced her residual AADC activity and drastically improved her symptoms. Our data thus provide a new insight into pathogenesis and pathophysiology of OH.


Asunto(s)
Descarboxilasas de Aminoácido-L-Aromático , Autoinmunidad , Hipotensión Ortostática , Femenino , Humanos , Persona de Mediana Edad , Descarboxilasas de Aminoácido-L-Aromático/deficiencia , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Catecolaminas , Dopamina/metabolismo , Hipotensión Ortostática/etiología , Hipotensión Ortostática/fisiopatología , Serotonina/metabolismo
2.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39201570

RESUMEN

Individuals suffering from diabetic polyneuropathy (DPN) experience debilitating symptoms such as pain, paranesthesia, and sensory disturbances, prompting a quest for effective treatments. Dipeptidyl-peptidase (DPP)-4 inhibitors, recognized for their potential in ameliorating DPN, have sparked interest, yet the precise mechanism underlying their neurotrophic impact on the peripheral nerve system (PNS) remains elusive. Our study delves into the neurotrophic effects of DPP-4 inhibitors, including Diprotin A, linagliptin, and sitagliptin, alongside pituitary adenylate cyclase-activating polypeptide (PACAP), Neuropeptide Y (NPY), and Stromal cell-derived factor (SDF)-1a-known DPP-4 substrates with neurotrophic properties. Utilizing primary culture dorsal root ganglia (DRG) neurons, we meticulously evaluated neurite outgrowth in response to these agents. Remarkably, all DPP-4 inhibitors and PACAP demonstrated a significant elongation of neurite length in DRG neurons (PACAP 0.1 µM: 2221 ± 466 µm, control: 1379 ± 420, p < 0.0001), underscoring their potential in nerve regeneration. Conversely, NPY and SDF-1a failed to induce neurite elongation, accentuating the unique neurotrophic properties of DPP-4 inhibition and PACAP. Our findings suggest that the upregulation of PACAP, facilitated by DPP-4 inhibition, plays a pivotal role in promoting neurite elongation within the PNS, presenting a promising avenue for the development of novel DPN therapies with enhanced neurodegenerative capabilities.


Asunto(s)
Neuropatías Diabéticas , Inhibidores de la Dipeptidil-Peptidasa IV , Ganglios Espinales , Proyección Neuronal , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Proyección Neuronal/efectos de los fármacos , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/metabolismo , Ratones , Neuropéptido Y/metabolismo , Neuropéptido Y/farmacología , Quimiocina CXCL12/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Linagliptina/farmacología , Dipeptidil Peptidasa 4/metabolismo , Fosfato de Sitagliptina/farmacología , Células Cultivadas , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Oligopéptidos
3.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35457223

RESUMEN

Autophagy is the process by which intracellular components are degraded by lysosomes. It is also activated by oxidative stress; hence, autophagy is thought to be closely related to oxidative stress, one of the major causes of diabetic neuropathy. We previously reported that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) induced antioxidant enzymes and protected Schwann cells from oxidative stress. However, the relationship between autophagy and oxidative stress-induced cell death in diabetic neuropathy has not been elucidated. Treatment with tert-butyl hydroperoxide (tBHP) decreased the cell survival rate, as measured by an MTT assay in immortalized Fischer rat Schwann cells 1 (IFRS1). A DHA pretreatment significantly prevented tBHP-induced cytotoxicity. tBHP increased autophagy, which was revealed by the ratio of the initiation markers, AMP-activated protein kinase, and UNC51-like kinase phosphorylation. Conversely, the DHA pretreatment suppressed excessive tBHP-induced autophagy signaling. Autophagosomes induced by tBHP in IFRS1 cells were decreased to control levels by the DHA pretreatment whereas autolysosomes were only partially decreased. These results suggest that DHA attenuated excessive autophagy induced by oxidative stress in Schwann cells and may be useful to prevent or reduce cell death in vitro. However, its potentiality to treat diabetic neuropathy must be validated in in vivo studies.


Asunto(s)
Neuropatías Diabéticas , Ácidos Docosahexaenoicos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia , Muerte Celular , Neuropatías Diabéticas/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Estrés Oxidativo , Ratas , Ratas Endogámicas F344 , Células de Schwann/metabolismo , Transducción de Señal , terc-Butilhidroperóxido/toxicidad
4.
Biochem Biophys Res Commun ; 532(1): 47-53, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-32826056

RESUMEN

Although diabetic polyneuropathy (DPN) is the commonest diabetic complication, its pathology remains to be clarified. As previous papers have suggested the neuroprotective effects of glucagon-like peptide-1 in DPN, the current study investigated the physiological indispensability of glucagon gene-derived peptides (GCGDPs) including glucagon-like peptide-1 in the peripheral nervous system (PNS). Neurological functions and neuropathological changes of GCGDP deficient (gcg-/-) mice were examined. The gcg-/- mice showed tactile allodynia and thermal hyperalgesia at 12-18 weeks old, followed by tactile and thermal hypoalgesia at 36 weeks old. Nerve conduction studies revealed a decrease in sensory nerve conduction velocity at 36 weeks old. Pathological findings showed a decrease in intraepidermal nerve fiber densities. Electron microscopy revealed a decrease in circularity and an increase in g-ratio of myelinated fibers and a decrease of unmyelinated fibers in the sural nerves of the gcg-/- mice. Effects of glucagon on neurite outgrowth were examined using an ex vivo culture of dorsal root ganglia. A supraphysiological concentration of glucagon promoted neurite outgrowth. In conclusion, the mice with deficiency of GCGDPs developed peripheral neuropathy with age. Furthermore, glucagon might have neuroprotective effects on the PNS of mice. GCGDPs might be involved in the pathology of DPN.


Asunto(s)
Neuropatías Diabéticas/etiología , Péptidos Similares al Glucagón/deficiencia , Animales , Neuropatías Diabéticas/genética , Neuropatías Diabéticas/patología , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Glucagón/deficiencia , Glucagón/genética , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/deficiencia , Péptido 1 Similar al Glucagón/genética , Péptido 1 Similar al Glucagón/metabolismo , Péptidos Similares al Glucagón/genética , Péptidos Similares al Glucagón/metabolismo , Hiperalgesia/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Nerviosas Mielínicas/patología , Conducción Nerviosa , Proyección Neuronal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Glucagón/genética , Receptores de Glucagón/metabolismo
5.
Am J Physiol Endocrinol Metab ; 314(6): E572-E583, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29406782

RESUMEN

Both high-fat (HFD) and high-carbohydrate (ST) diets are known to induce weight gain. Glucose-dependent insulinotropic polypeptide (GIP) is secreted mainly from intestinal K cells upon stimuli by nutrients such as fat and glucose, and it potentiates glucose-induced insulin secretion. GIP is well known to contribute to HFD-induced obesity. In this study, we analyzed the effect of ST feeding on GIP secretion and metabolic parameters to explore the role of GIP in ST-induced weight gain. Both wild-type (WT) and GIP receptor deficient ( GiprKO) mice were fed normal chow (NC), ST, or moderate (m)HFD for 22 wk. Body weight was measured, and then glucose tolerance tests were performed. Insulin secretion from isolated islets also was analyzed. WT mice fed ST or mHFD displayed weight gain concomitant with increased plasma GIP levels compared with WT mice fed NC. WT mice fed mHFD showed improved glucose tolerance due to enhanced insulin secretion during oral glucose tolerance tests compared with WT mice fed NC or ST. GiprKO mice fed mHFD did not display weight gain. On the other hand, GiprKO mice fed ST showed weight gain and did not display obvious glucose intolerance. Glucose-induced insulin secretion was enhanced during intraperitoneal glucose tolerance tests and from isolated islets in both WT and GiprKO mice fed ST compared with those fed NC. In conclusion, enhanced GIP secretion induced by mHFD-feeding contributes to increased insulin secretion and body weight gain, whereas GIP is marginally involved in weight gain induced by ST-feeding.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/farmacología , Polipéptido Inhibidor Gástrico/fisiología , Aumento de Peso/efectos de los fármacos , Animales , Carbohidratos de la Dieta/efectos adversos , Glucosa/metabolismo , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa/métodos , Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de la Hormona Gastrointestinal/genética , Receptores de la Hormona Gastrointestinal/metabolismo
6.
Am J Physiol Endocrinol Metab ; 312(6): E471-E481, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28174179

RESUMEN

S100 calcium-binding protein B (S100B), a multifunctional macromolecule mainly expressed in nerve tissues and adipocytes, has been suggested to contribute to the pathogenesis of obesity. To clarify the role of S100B in insulin action and glucose metabolism in peripheral tissues, we investigated the effect of S100B on glycolysis in myoblast and myotube cells. Rat myoblast L6 cells were treated with recombinant mouse S100B to examine glucose consumption, lactate production, glycogen accumulation, glycolytic metabolites and enzyme activity, insulin signaling, and poly(ADP-ribosyl)ation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Glycolytic metabolites were investigated by enzyme assays or metabolome analysis, and insulin signaling was assessed by Western blot analysis. Enzyme activity and poly(ADP-ribosyl)ation of GAPDH was evaluated by an enzyme assay and immunoprecipitation followed by dot blot with an anti-poly(ADP-ribose) antibody, respectively. S100B significantly decreased glucose consumption, glucose analog uptake, and lactate production in L6 cells, in either the presence or absence of insulin. In contrast, S100B had no effect on glycogen accumulation and insulin signaling. Metabolome analysis revealed that S100B increased the concentration of glycolytic intermediates upstream of GAPDH. S100B impaired GAPDH activity and increased poly(ADP-ribosyl)ated GAPDH proteins. The effects of S100B on glucose metabolism were mostly canceled by a poly(ADP-ribose) polymerase inhibitor. Similar results were obtained in C2C12 myotube cells. We conclude that S100B as a humoral factor may impair glycolysis in muscle cells independent of insulin action, and the effect may be attributed to the inhibition of GAPDH activity from enhanced poly(ADP-ribosyl)ation of the enzyme.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Glucólisis , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Procesamiento Proteico-Postraduccional , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Animales , Línea Celular , Células Cultivadas , Inducción Enzimática/efectos de los fármacos , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Glucólisis/efectos de los fármacos , Hexoquinasa/química , Hexoquinasa/genética , Hexoquinasa/metabolismo , Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/enzimología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/enzimología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas , Proteínas Recombinantes/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/genética
7.
Diabetologia ; 59(7): 1533-1541, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27053237

RESUMEN

AIMS/HYPOTHESIS: The action of incretin hormones including glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) is potentiated in animal models defective in glucagon action. It has been reported that such animal models maintain normoglycaemia under streptozotocin (STZ)-induced beta cell damage. However, the role of GIP in regulation of glucose metabolism under a combination of glucagon deficiency and STZ-induced beta cell damage has not been fully explored. METHODS: In this study, we investigated glucose metabolism in mice deficient in proglucagon-derived peptides (PGDPs)-namely glucagon gene knockout (GcgKO) mice-administered with STZ. Single high-dose STZ (200 mg/kg, hSTZ) or moderate-dose STZ for five consecutive days (50 mg/kg × 5, mSTZ) was administered to GcgKO mice. The contribution of GIP to glucose metabolism in GcgKO mice was also investigated by experiments employing dipeptidyl peptidase IV (DPP4) inhibitor (DPP4i) or Gcg-Gipr double knockout (DKO) mice. RESULTS: GcgKO mice developed severe diabetes by hSTZ administration despite the absence of glucagon. Administration of mSTZ decreased pancreatic insulin content to 18.8 ± 3.4 (%) in GcgKO mice, but ad libitum-fed blood glucose levels did not significantly increase. Glucose-induced insulin secretion was marginally impaired in mSTZ-treated GcgKO mice but was abolished in mSTZ-treated DKO mice. Although GcgKO mice lack GLP-1, treatment with DPP4i potentiated glucose-induced insulin secretion and ameliorated glucose intolerance in mSTZ-treated GcgKO mice, but did not increase beta cell area or significantly reduce apoptotic cells in islets. CONCLUSIONS/INTERPRETATION: These results indicate that GIP has the potential to ameliorate glucose intolerance even under STZ-induced beta cell damage by increasing insulin secretion rather than by promoting beta cell survival.


Asunto(s)
Polipéptido Inhibidor Gástrico/metabolismo , Insulina/metabolismo , Proglucagón/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proglucagón/deficiencia , Estreptozocina/toxicidad
8.
Biochem Biophys Res Commun ; 463(3): 344-50, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26022129

RESUMEN

Compared with other cancers, diabetes mellitus is more closely associated with hepatocellular carcinoma (HCC). However, whether hyperglycemia is associated with hepatic carcinogenesis remains uncertain. In this study, we investigate the effect of hyperglycemia on HCC development. Mice pretreated with 7,12-dimethylbenz (a) anthracene were divided into three feeding groups: normal diet (Control), high-starch diet (Starch), and high-fat diet (HFD) groups. In addition, an STZ group containing mice that were fed a normal diet and injected with streptozotosin to induce hyperglycemia was included. The STZ group demonstrated severe hyperglycemia, whereas the Starch group demonstrated mild hyperglycemia and insulin resistance. The HFD group demonstrated mild hyperglycemia and severe insulin resistance. Multiple HCC were macroscopically and histologically observed only in the HFD group. Hepatic steatosis was observed in the Starch and HFD groups, but levels of inflammatory cytokines, interleukin (IL)-6, tumor necrosis factor-α, and IL-1ß, were elevated only in the HFD group. The composition of gut microbiota was similar between the Control and STZ groups. A significantly higher number of Clostridium cluster XI was detected in the feces of the HFD group than that of all other groups; it was not detectable in the Starch group. These data suggested that hyperglycemia had no effect on hepatic carcinogenesis. Different incidences of HCC between the Starch and HFD groups may be attributable to degree of insulin resistance, but diet-induced changes in gut microbiota including Clostridium cluster XI may have influenced hepatic carcinogenesis. In conclusion, in addition to the normalization of blood glucose levels, diabetics may need to control insulin resistance and diet contents to prevent HCC development.


Asunto(s)
Carcinoma Hepatocelular/etiología , Diabetes Mellitus Experimental/complicaciones , Hiperglucemia/complicaciones , Neoplasias Hepáticas/etiología , Animales , Carcinoma Hepatocelular/microbiología , Carcinoma Hepatocelular/patología , Clostridium/aislamiento & purificación , Diabetes Mellitus Experimental/microbiología , Dieta/efectos adversos , Dieta Alta en Grasa/efectos adversos , Hígado Graso/etiología , Hígado Graso/microbiología , Hígado Graso/patología , Tracto Gastrointestinal/microbiología , Hiperglucemia/microbiología , Hiperglucemia/patología , Resistencia a la Insulina , Hígado/patología , Neoplasias Hepáticas/microbiología , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos C57BL
9.
J Diabetes Investig ; 15(6): 736-742, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38421109

RESUMEN

AIMS/INTRODUCTION: This study aimed to investigate the diagnostic potential of two simplified tests, a point-of-care nerve conduction device (DPNCheck™) and a coefficient of variation of R-R intervals (CVR-R), as an alternative to traditional nerve conduction studies for the diagnosis of diabetic polyneuropathy (DPN) in patients with diabetes. MATERIALS AND METHODS: Inpatients with type 1 or type 2 diabetes (n = 167) were enrolled. The study population consisted of 101 men, with a mean age of 60.8 ± 14.8 years. DPN severity was assessed using traditional nerve conduction studies, and differentiated based on Baba's classification (BC). To examine the explanatory potential of variables in DPNCheck™ and CVR-R regarding the severity of DPN according to BC, a multiple regression analysis was carried out, followed by a receiver operating characteristic analysis. RESULTS: Based on BC, 61 participants (36.5% of the total) were categorized as having DPN severity of stage 2 or more. The multiple regression analysis yielded a predictive formula with high predictive power for DPN diagnosis (estimated severity of DPN in BC = 2.258 - 0.026 × nerve conduction velocity [m/s] - 0.594 × ln[sensory nerve action potential amplitude (µV)] + 0.528In[age(years)] - 0.178 × ln[CVR-R], r = 0.657). The area under the curve in receiver operating characteristic analysis was 0.880. Using the optimal cutoff value for DPN with severer than stage 2, the predictive formula showed good diagnostic efficacy: sensitivity of 83.6%, specificity of 79.2%, positive predictive value of 51.7% and negative predictive value of 76.1%. CONCLUSIONS: These findings suggest that DPN diagnosis using DPNCheck™ and CVR-R could improve diagnostic efficiency and accessibility for DPN assessment in patients with diabetes.


Asunto(s)
Neuropatías Diabéticas , Electrocardiografía , Conducción Nerviosa , Sistemas de Atención de Punto , Humanos , Neuropatías Diabéticas/diagnóstico , Masculino , Persona de Mediana Edad , Conducción Nerviosa/fisiología , Electrocardiografía/instrumentación , Electrocardiografía/métodos , Anciano , Femenino , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico
10.
Diabetol Int ; 15(1): 99-108, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38264217

RESUMEN

Aims: We aimed to identify patients who would benefit from basal insulin-supported oral therapy (BOT) with a glinide and an α-glucosidase inhibitor (a fixed-dose combination tablet of mitiglinide 10 mg and voglibose 0.2 mg) in Japanese type 2 diabetic patients. Methods: Patients who were hospitalized to improve hyperglycemia received basal-bolus insulin therapy. After the reduction of glucose toxicity, a 75 g oral glucose tolerance test and a glucagon test were performed. Thereafter, the basal-bolus insulin therapy was switched to BOT with mitiglinide, followed by further addition of voglibose. Interstitial glucose levels were continuously monitored throughout the study period. Diurnal glucose profile was recorded and analyzed. Patients were divided into two groups according to whether their percentage of time in range (TIR, 70-180 mg/dL) under BOT with mitiglinide/voglibose was higher than 70% or not, and the differences in clinical characteristics between the groups were analyzed. Results: Twenty patients were enrolled, and 19 of them completed the study. BOT with mitiglinide/voglibose achieved ≥ 70% of TIR in thirteen patients. The area under the curve of serum C-peptide levels during the oral glucose tolerance test was significantly higher in the patients with ≥ 70% of TIR. The daily insulin dosages and blood glucose profiles were comparable between the two groups. Conclusions: The efficacy of BOT with mitiglinide/voglibose depended on residual insulin secretory abilities. This therapy would be a useful therapeutic option for patients with type 2 diabetes.

11.
Diabetol Int ; 14(1): 76-85, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36636163

RESUMEN

Aims: Muscle atrophy is a diabetic complication, which results in a deterioration in glycemic control in type 2 diabetes mellitus (T2DM) individuals. The psoas muscle mass index (PMI) is a reliable indicator for estimating whole-body muscle mass. We aimed to examine the relationship between clinical parameters and the PMI to clarify the mechanism underlying muscle atrophy in diabetes. Methods: This retrospective, cross-sectional study examined 51 patients (31 men and 20 women) with T2DM and a mean HbA1c value of 9.9 ± 1.7%. These patients were admitted to Aichi Medical University Hospital and underwent abdominal computed tomography imaging from July 2020 to April 2021. Multiple clinical parameters were assessed with the PMI. Results: In a multiple regression analysis adjusted for age and sex, the PMI was correlated with body weight, body mass index, serum concentrations of corrected calcium, aspartate aminotransferase, alanine aminotransferase, creatine kinase, thyroid-stimulating hormone (TSH), urinary C-peptide concentrations, the free triiodothyronine/free thyroxine (FT3/FT4) ratio, and the young adult mean score at the femur neck. Receiver operating characteristic curves were created using TSH concentrations and the FT3/FT4 ratio for diagnosing a low PMI. The area under the curve was 0.593 and 0.699, respectively. The cut-off value with maximum accuracy for TSH concentrations was 1.491 µIU/mL, sensitivity was 56.1%, and specificity was 80.0%. Corresponding values for the FT3/FT4 ratio were 1.723, 78.0, and 66.7%, respectively. Conclusion: TSH concentrations and the FT3/FT4 ratio are correlated with the PMI, and their thresholds may help prevent muscle mass loss in Japanese individuals with T2DM.

12.
Nat Metab ; 4(2): 254-268, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35145326

RESUMEN

ß cells have a limited capacity for regeneration, which predisposes towards diabetes. Here, we show that, of the MYC family members, Mycl plays a key role in proliferation of pancreatic endocrine cells. Genetic ablation of Mycl causes a reduction in the proliferation of pancreatic endocrine cells in neonatal mice. By contrast, the expression of Mycl in adult mice stimulates the proliferation of ß and α cells, and the cells persist after withdrawal of Mycl expression. A subset of the expanded α cells give rise to insulin-producing cells after this withdrawal. Transient Mycl expression in vivo is sufficient to normalize the hyperglycaemia of diabetic mice. In vitro expression of Mycl similarly provokes active replication in islet cells, even in those from aged mice. Finally, we show that MYCL stimulates the division of human adult cadaveric islet cells. Our results demonstrate that the induction of Mycl alone expands the functional ß-cell population, which may provide a regenerative strategy for ß cells.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Glucagón , Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Células Secretoras de Glucagón/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Hormonas Pancreáticas/metabolismo
13.
Sci Rep ; 12(1): 9724, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697861

RESUMEN

Diabetic peripheral neuropathy (DPN) includes symptoms of thermosensory impairment, which are reported to involve changes in the expression or function, or both, of nociceptive TRPV1 and TRPA1 channels in rodents. In the present study, we did not find changes in the expression or function of TRPV1 or TRPA1 in DPN mice caused by STZ, although thermal hypoalgesia was observed in a murine model of DPN or TRPV1-/- mice with a Plantar test, which specifically detects temperature avoidance. With a Thermal Gradient Ring in which mice can move freely in a temperature gradient, temperature preference can be analyzed, and we clearly discriminated the temperature-dependent phenotype between DPN and TRPV1-/- mice. Accordingly, we propose approaches with multiple behavioral methods to analyze the progression of DPN by response to thermal stimuli. Attention to both thermal avoidance and preference may provide insight into the symptoms of DPN.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Animales , Ratones , Neuropatías Diabéticas/etiología
14.
STAR Protoc ; 3(3): 101591, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35942346

RESUMEN

Morphological analysis of peripheral nerves in mouse models can be used to characterize the pathophysiology of peripheral nerve disease, but obtaining high-quality electron micrographs can be challenging. Here, we present a protocol to obtain electron micrographs of mouse peripheral nerves. We detail the procedures of sampling, fixation, and embedding of peripheral nerves. We then outline the steps for ultrathin sectioning and transmission electron microscopy imaging. Finally, we describe morphological evaluation of nerve fibers in these images using ImageJ and AxonSeg. For complete details on the use and execution of this protocol, please refer to Nakai-Shimoda et al. (2021).


Asunto(s)
Técnicas Histológicas , Nervios Periféricos , Animales , Técnicas Histológicas/métodos , Ratones , Microscopía Electrónica de Transmisión , Nervios Periféricos/diagnóstico por imagen , Manejo de Especímenes
15.
Nutrients ; 14(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35267952

RESUMEN

(1) Background: Protein stimulates the secretion of glucagon (GCG), which can affect glucose metabolism. This study aimed to analyze the metabolic effect of a high-protein diet (HPD) in the presence or absence of proglucagon-derived peptides, including GCG and GLP-1. (2) Methods: The response to HPD feeding for 7 days was analyzed in mice deficient in proglucagon-derived peptides (GCGKO). (3) Results: In both control and GCGKO mice, food intake and body weight decreased with HPD and intestinal expression of Pepck increased. HPD also decreased plasma FGF21 levels, regardless of the presence of proglucagon-derived peptides. In control mice, HPD increased the hepatic expression of enzymes involved in amino acid metabolism without the elevation of plasma amino acid levels, except branched-chain amino acids. On the other hand, HPD-induced changes in the hepatic gene expression were attenuated in GCGKO mice, resulting in marked hyperaminoacidemia with lower blood glucose levels; the plasma concentration of glutamine exceeded that of glucose in HPD-fed GCGKO mice. (4) Conclusions: Increased plasma amino acid levels are a common feature in animal models with blocked GCG activity, and our results underscore that GCG plays essential roles in the homeostasis of amino acid metabolism in response to altered protein intake.


Asunto(s)
Dieta Rica en Proteínas , Glucagón , Animales , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Ratones , Péptidos , Proglucagón/genética , Proglucagón/metabolismo
16.
iScience ; 25(1): 103609, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35005553

RESUMEN

Glucose-responsive ATP-sensitive potassium channels (KATP) are expressed in a variety of tissues including nervous systems. The depolarization of the membrane potential induced by glucose may lead to hyperexcitability of neurons and induce excitotoxicity. However, the roles of KATP in the peripheral nervous system (PNS) are poorly understood. Here, we determine the roles of KATP in the PNS using KATP-deficient (Kir6.2-deficient) mice. We demonstrate that neurite outgrowth of dorsal root ganglion (DRG) neurons was reduced by channel closers sulfonylureas. However, a channel opener diazoxide elongated the neurite. KATP subunits were expressed in mouse DRG, and expression of certain subunits including Kir6.2 was increased in diabetic mice. In Kir6.2-deficient mice, the current perception threshold, thermal perception threshold, and sensory nerve conduction velocity were impaired. Electron microscopy revealed a reduction of unmyelinated and small myelinated fibers in the sural nerves. In conclusion, KATP may contribute to the development of peripheral neuropathy.

17.
Diabetol Int ; 12(3): 293-300, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34150438

RESUMEN

AIMS: We investigated the impact of actual waiting time and perceived waiting time on treatment satisfaction in patients with diabetes receiving outpatient care. METHODS: Three hundred and thirty-six outpatients diagnosed with diabetes mellitus or impaired glucose tolerance were selected and the time they spent in reception, blood collection, consultation, and accounting were recorded to measure the time they spent waiting in the hospital (actual waiting time). Simultaneously, we conducted a questionnaire survey that included questions on their perceptions of the waiting time (perceived waiting time) and satisfaction with treatment (DTSQ). RESULTS: No significant relationship was found between actual waiting time and DTSQ score, although associations were observed with perceived waiting time. The patients who felt the overall waiting time was long scored 23.0, those who felt it was short scored 26.0, and those who felt it was very short scored 34.0, with those who felt the waiting time was long having a significantly lower score (p = 0.004, p < 0.001, respectively) and those who felt it was short having a significantly lower score than those who felt it was very short (p = 0.008). In addition, more patients who felt the waiting time was long expressed dissatisfaction with the responses of doctors and staff than those who felt the waiting time was short. CONCLUSIONS: These results suggest that in addition to reducing actual waiting times, shortening perceived waiting times by improving the responses of medical staff could help to increase patient satisfaction.

19.
Biomolecules ; 11(2)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33672050

RESUMEN

Although diabetic polyneuropathy (DPN) is a frequent diabetic complication, no effective therapeutic approach has been established. Glucagon is a crucial hormone for glucose homeostasis but has pleiotropic effects, including neuroprotective effects in the central nervous system. However, the importance of glucagon in the peripheral nervous system (PNS) has not been clarified. Here, we hypothesized that glucagon might have a neuroprotective function in the PNS. The immortalized rat dorsal root ganglion (DRG) neuronal cell line 50B11 was treated with methylglyoxal (MG) to mimic an in vitro DPN model. The cells were cultured with or without glucagon or MG. Neurotoxicity, survival, apoptosis, neurite projection, cyclic adenosine monophosphate (cAMP), and protein kinase A (PKA) were examined. Glucagon had no cytotoxicity and rescued the cells from neurotoxicity. Cell survival was increased by glucagon. The ratio of apoptotic cells, which was increased by MG, was reduced by glucagon. Neurite outgrowth was accelerated in glucagon-treated cells. Cyclic AMP and PKA accumulated in the cells after glucagon stimulation. In conclusion, glucagon protected the DRG neuronal cells from MG-induced cellular stress. The cAMP/PKA pathway may have significant roles in those protective effects of glucagon. Glucagon may be a potential target for the treatment of DPN.


Asunto(s)
Neuropatías Diabéticas/metabolismo , Glucagón/química , Neuronas/metabolismo , Sistema Nervioso Periférico/metabolismo , Piruvaldehído/química , Animales , Apoptosis , Línea Celular , Supervivencia Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ganglios Espinales/metabolismo , Glucagón/metabolismo , Mitocondrias/metabolismo , Neuritas/metabolismo , Ratas , Especies Reactivas de Oxígeno
20.
J Diabetes Investig ; 12(4): 583-591, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32799422

RESUMEN

AIMS/INTRODUCTION: A gold standard in the diagnosis of diabetic polyneuropathy (DPN) is a nerve conduction study. However, as a nerve conduction study requires expensive equipment and well-trained technicians, it is largely avoided when diagnosing DPN in clinical settings. Here, we validated a novel diagnostic method for DPN using a point-of-care nerve conduction device as an alternative way of diagnosis using a standard electromyography system. MATERIALS AND METHODS: We used a multiple regression analysis to examine associations of nerve conduction parameters obtained from the device, DPNCheck™, with the severity of DPN categorized by the Baba classification among 375 participants with type 2 diabetes. A nerve conduction study using a conventional electromyography system was implemented to differentiate the severity in the Baba classification. The diagnostic properties of the device were evaluated using a receiver operating characteristic curve. RESULTS: A multiple regression model to predict the severity of DPN was generated using sural nerve conduction data obtained from the device as follows: the severity of DPN = 2.046 + 0.509 × ln(age [years]) - 0.033 × (nerve conduction velocity [m/s]) - 0.622 × ln(amplitude of sensory nerve action potential [µV]), r = 0.649. Using a cut-off value of 1.3065 in the model, moderate-to-severe DPN was effectively diagnosed (area under the receiver operating characteristic curve 0.871, sensitivity 70.1%, specificity 87.7%, positive predictive value 83.0%, negative predictive value 77.3%, positive likelihood ratio 5.67, negative likelihood ratio 0.34). CONCLUSIONS: Nerve conduction parameters in the sural nerve acquired by the handheld device successfully predict the severity of DPN.


Asunto(s)
Neuropatías Diabéticas/diagnóstico , Conducción Nerviosa , Pruebas en el Punto de Atención , Adulto , Anciano , Anciano de 80 o más Años , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA