Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 140(5): 631-42, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20211133

RESUMEN

Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.


Asunto(s)
Evolución Biológica , Naegleria/genética , Eucariontes/clasificación , Eucariontes/genética , Flagelos/metabolismo , Datos de Secuencia Molecular , Naegleria/metabolismo , Filogenia , Proteínas Protozoarias/análisis , Proteínas Protozoarias/genética
2.
PLoS Genet ; 7(6): e1002070, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21695235

RESUMEN

The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicola was sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed "mesosynteny" is very different from synteny seen between other organisms. A surprising feature of the M. graminicola genome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors.


Asunto(s)
Ascomicetos/genética , Cromosomas Fúngicos/genética , Genoma Fúngico/genética , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Reordenamiento Génico , Enfermedades de las Plantas/microbiología , Sintenía , Triticum/microbiología
3.
Proc Natl Acad Sci U S A ; 106(6): 1954-9, 2009 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-19193860

RESUMEN

Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative beta-1-4 endoglucanase were expressed at high levels relative to glucose-grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also up-regulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H(2)O(2). These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H(2)O(2) react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons with the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.


Asunto(s)
Perfilación de la Expresión Génica , Genoma Fúngico , Lignina/metabolismo , Redes y Vías Metabólicas/genética , Polyporales/genética , Secuencia de Bases , Evolución Biológica , Celulasas , Enzimas/genética , Glicósido Hidrolasas , Datos de Secuencia Molecular , Oxidorreductasas , Polyporales/metabolismo , Madera/metabolismo
4.
Genome Biol ; 12(2): R20, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21356102

RESUMEN

BACKGROUND: The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum. RESULTS: We have produced a draft genome sequence of another group dictyostelid, Dictyostelium purpureum, and compare it to the D. discoideum genome. The assembly (8.41 × coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. Interesting patterns of gene conservation and divergence are also evident, suggesting function differences; some protein families, such as the histidine kinases, have undergone little functional change, whereas others, such as the polyketide synthases, have undergone extensive diversification. The abundant amino acid homopolymers encoded in both genomes are generally not found in homologous positions within proteins, so they are unlikely to derive from ancestral DNA triplet repeats. Genes involved in the social stage evolved more rapidly than others, consistent with either relaxed selection or accelerated evolution due to social conflict. CONCLUSIONS: The findings from this new genome sequence and comparative analysis shed light on the biology and evolution of the Dictyostelia.


Asunto(s)
Evolución Biológica , Dictyostelium/genética , Evolución Molecular , Genoma , Genómica/métodos , Animales , Secuencia de Bases , Secuencia Conservada/genética , Transferencia de Gen Horizontal , Especiación Genética , Tamaño del Genoma , Histidina Quinasa , Humanos , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Filogenia , Sintasas Poliquetidas/genética , Proteínas Quinasas/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA