Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
FASEB J ; 37(7): e23009, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37273180

RESUMEN

Human and animal studies support that consuming a high level of linoleic acid (LA, 18:2ω-6), an essential fatty acid and key component of the human diet, increases the risk of colon cancer. However, results from human studies have been inconsistent, making it challenging to establish dietary recommendations for optimal LA intake. Given the importance of LA in the human diet, it is crucial to better understand the molecular mechanisms underlying its potential colon cancer-promoting effects. Using LC-MS/MS-based targeted lipidomics, we find that the cytochrome P450 (CYP) monooxygenase pathway is a major pathway for LA metabolism in vivo. Furthermore, CYP monooxygenase is required for the colon cancer-promoting effects of LA, since the LA-rich diet fails to exacerbate colon cancer in CYP monooxygenase-deficient mice. Finally, CYP monooxygenase mediates the pro-cancer effects of LA by converting LA to epoxy octadecenoic acids (EpOMEs), which have potent effects on promoting colon tumorigenesis via gut microbiota-dependent mechanisms. Overall, these results support that CYP monooxygenase-mediated conversion of LA to EpOMEs plays a crucial role in the health effects of LA, establishing a unique mechanistic link between dietary fatty acid intake and cancer risk. These results could help in developing more effective dietary guidelines for optimal LA intake and identifying subpopulations that may be especially vulnerable to LA's negative effects.


Asunto(s)
Neoplasias del Colon , Ácido Linoleico , Humanos , Ratones , Animales , Ácido Linoleico/farmacología , Ácido Linoleico/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Eicosanoides , Sistema Enzimático del Citocromo P-450/metabolismo , Dieta , Neoplasias del Colon/etiología
2.
J Sci Food Agric ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450745

RESUMEN

Strain activity and stability severely limit the beneficial effects of probiotics in modulating host health. Postbiotics have emerged as a promising alternative as they can provide similar or even enhanced efficacy to probiotics, even under inactivated conditions. This review introduces the ingredients, preparation, and identification techniques of postbiotics, focusing on the comparison of the advantages and limitations between probiotics and postbiotics based on their mechanisms and applications. Inactivation treatment is the most significant difference between postbiotics and probiotics. We highlight the use of emerging technologies to inactivate probiotics, optimize process conditions to maintain the activity of postbiotics, or scale up their production. Postbiotics have high stability which can overcome unfavorable factors, such as easy inactivation and difficult colonization of probiotics after entering the intestine, and are rapidly activated, allowing continuous and rapid optimization of the intestinal microecological environment. They provide unique mechanisms, and multiple targets act on the gut-organ axis, co-providing new clues for the study of the biological functions of postbiotics. We summarize the mechanisms of action of inactivated lactic acid bacteria, highlighting that the NF-κB and MAPK pathways can be used as immune targeting pathways for postbiotic modulation of host health. Generally, we believe that as the classification, composition, and efficacy mechanism of postbiotics become clearer they will be more widely used in food, medicine, and other fields, greatly enriching the dimensions of food innovation. © 2024 Society of Chemical Industry.

3.
Crit Rev Food Sci Nutr ; : 1-16, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37318213

RESUMEN

Lactic acid bacteria (LAB) is a type of probiotic that may benefit intestinal health. Recent advances in nanoencapsulation provide an effective strategy to protect them from harsh conditions via surface functionalization coating techniques. Herein, the categories and features of applicable encapsulation methods are compared to highlight the significant role of nanoencapsulation. Commonly used food-grade biopolymers (polysaccharides and protein) and nanomaterials (nanocellulose and starch nanoparticles) are summarized along with their characteristics and advances to demonstrate enhanced combination effects in LAB co-encapsulation. Nanocoating for LAB provides an integrity dense or smooth layer attributed to the cross-linking and assembly of the protectant. The synergism of multiple chemical forces allows for the formation of subtle coatings, including electrostatic attractions, hydrophobic interactions, π-π, and metallic bonds. Multilayer shells have stable physical transition properties that could increase the space between the probiotic cells and the outer environment, thus delaying the microcapsules burst time in the gut. Probiotic delivery stability can be promoted by enhancing the thickness of the encapsulated layer and nanoparticle binding. Maintenance of benefits and minimization of nanotoxicity are desirable, and green synthesized nanoparticles are emerging. Future trends include optimized formulation, especially using biocompatible materials, protein or plant-based materials, and material modification.

4.
Anal Bioanal Chem ; 414(28): 8081-8091, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36152037

RESUMEN

A simple, sensitive, specific and fast method based on the loop-mediated isothermal amplification (LAMP) technique and cleavable molecular beacon (CMB) was developed for chicken authentication detection. LAMP and CMB were used for DNA amplification and amplicon analysis, respectively. Targeting the mitochondrial cytochrome b gene of chickens, five primers and one CMB probe were designed, and their specificity was validated against nine other animal species. The structure of CMB and concentrations of dNTPs, MgSO4, betaine, RNase H2, primers and CMB were optimized. The CMB-LAMP assay was completed within 17 min, and its limit of detection for chicken DNA was 1.5 pg µL-1. Chicken adulteration as low as 0.5% was detected in beef, and no cross-reactivity was observed. Finally, this assay was successfully applied to 20 commercial meat products. When combined with our developed DNA extraction method (the extraction time was 1 min: lysis for 10 s, washing for 20 s and elution for 30 s), the entire process (from DNA extraction to results analysis) was able to be completed within 20 min, which is at least 10 min shorter than other LAMP-based methods. Our method showed great potential for the on-site detection of chicken adulteration in meat.


Asunto(s)
Pollos , Técnicas de Amplificación de Ácido Nucleico , Bovinos , Animales , Técnicas de Amplificación de Ácido Nucleico/métodos , Carne/análisis , Cartilla de ADN/genética , ADN , Sensibilidad y Especificidad
5.
Mikrochim Acta ; 189(11): 433, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36287256

RESUMEN

A rapid, convenient, low-cost, and selective DNA isolation method was developed for identifying meat adulteration. A mesoporous metal organic framework (Meso-UIO-66)-coated solid phase microextraction system was employed as an isolation device to simplify DNA isolation into three steps (lysis, washing, and elution). Meso-UIO-66 was utilized as the adsorbent because of its positively charged surface, high chemical stability, and mesoporous structure. Meso-UIO-66 was characterized by scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet‒visible spectroscopy, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption tests. Parameters that affected DNA isolation were optimized. This method can be used to isolate and purify DNA from meat in 60 s, and the DNA concentration and purity are comparable to those of samples isolated with a commercial kit. Multiple DNA detection was achieved by coupling this method with the multiplex polymerase chain reaction technique, and the detection limit was lower than 1% (w/w).


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Microextracción en Fase Sólida/métodos , Polvos , Límite de Detección , Carne , Reacción en Cadena de la Polimerasa , ADN/genética , Nitrógeno
6.
Crit Rev Food Sci Nutr ; 59(sup1): S81-S95, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30740983

RESUMEN

Thromboembolism and its sequelae have been the leading causes of morbidity and mortality throughout the world. Food-derived antithrombotic peptides, as potential ingredients in health-promoting functional foods targeting thrombus, have attracted increasing attention because of their high biological activities, low toxicity, and ease of metabolism in the human body. This review presents the conventional workflow of preparation, isolation and identification of antithrombotic peptides from various kinds of food materials. More importantly, to analyze the antithrombotic effects and mechanism of antithrombotic peptides, methods for interaction of anticoagulant peptides and thrombin, the main participant in thrombosis, were analyzed from biochemistry, solution chemistry and crystal chemistry. The present study is intended to highlight the recent advances in research of food-derived antithrombotic peptide as a novel vehicle in the field of food science and nutrition. Future outlooks are highlighted with the aim to suggest a research line to be followed in further studies with the introduced research approach.


Asunto(s)
Fibrinolíticos/aislamiento & purificación , Fibrinolíticos/farmacología , Péptidos/farmacología , Trombina/efectos de los fármacos , Animales , Anticoagulantes/farmacología , Alimentos , Humanos , Péptidos/aislamiento & purificación , Trombosis
7.
Int J Mol Sci ; 19(7)2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30029529

RESUMEN

Mytilus edulis is a typical marine bivalve mollusk. Many kinds of bioactive components with nutritional and pharmaceutical activities in Mytilus edulis were reported. In this study, eight different parts of Mytilus edulis tissues, i.e., the foot, byssus, pedal retractor muscle, mantle, gill, adductor muscle, viscera, and other parts, were separated and the proteins from these tissues were prepared. A total of 277 unique peptides from the hydrolysates of different proteins were identified by UPLC-Q-TOF-MS/MS, and the molecular weight distribution of the peptides in different tissues was investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The bioactivity of the peptides was predicted through the Peptide Ranker database and molecular docking. Moreover, the peptides from the adductor muscle were chosen to do the active validation of anticoagulant activity. The active mechanism of three peptides from the adductor muscle, VQQELEDAEERADSAEGSLQK, RMEADIAAMQSDLDDALNGQR, and AAFLLGVNSNDLLK, were analyzed by Discovery Studio 2017, which also explained the anticoagulant activity of the hydrolysates of proteins from adductor muscle. This study optimized a screening and identification method of bioactive peptides from enzymatic hydrolysates of different tissues in Mytilus edulis.


Asunto(s)
Anticoagulantes/metabolismo , Simulación por Computador , Mytilus edulis/metabolismo , Péptidos/metabolismo , Proteínas/metabolismo , Tripsina/metabolismo , Secuencia de Aminoácidos , Animales , Anticoagulantes/química , Hidrólisis , Simulación del Acoplamiento Molecular , Especificidad de Órganos , Péptidos/química , Solubilidad
8.
Int J Mol Sci ; 19(1)2018 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-29300301

RESUMEN

The blue mussel (Mytilus edulis) reportedly contains many bioactive components of nutritional value. Water-, salt- and acid-soluble M. edulis protein fractions were obtained and the proteins were trypsinized. The resultant peptides were analyzed by ultra-performance liquid chromatography quadrupole time of flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). 387 unique peptides were identified that matched 81 precursor proteins. Molecular mass distributions of the proteins and peptides were analyzed by sodium dodecyl sulfate-polyacryl amide gel electrophoresis (SDS-PAGE). The differences between the three protein samples were studied by Venn diagram of peptide and protein compositions. Toxicity, allergic and antithrombotic activity of peptides was predicted using database website and molecular docking respectively. The antithrombotic activity of enzymatic hydrolysate from water-, salt- and acid-soluble M. edulis protein were 40.17%, 85.74%, 82.00% at 5 mg/mL, respectively. Active mechanism of antithrombotic peptide (ELEDSLDSER) was also research about amino acid binding sites and interaction, simultaneously.


Asunto(s)
Antitrombinas/farmacología , Mytilus edulis/química , Péptidos/farmacología , Proteínas/farmacología , Secuencia de Aminoácidos , Animales , Simulación por Computador , Hidrólisis , Péptidos/química , Proteínas/química
9.
Int J Mol Sci ; 19(4)2018 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-29641461

RESUMEN

In the present study, a novel angiotensin I-converting enzyme inhibitory (ACE inhibitory) peptide, EPNGLLLPQY, derived from walnut seed storage protein, fragment residues 80-89, was identified by ultra-high performance liquid chromatography electrospray ionization quadrupole time of flight mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) from walnut protein hydrolysate. The IC50 value of the peptide was 233.178 µM, which was determined by the high performance liquid chromatography method by measuring the amount of hippuric acid (HA) generated from the ACE decomposition substrate (hippuryl-l-histidyl-l-leucine (HHL) to assess the ACE activity. Enzyme inhibitory kinetics of the peptide against ACE were also conducted, by which the inhibitory mechanism of ACE-inhibitory peptide was confirmed. Moreover, molecular docking was simulated by Discovery Studio 2017 R2 software to provide the potential mechanisms underlying the ACE-inhibitory activity of EPNGLLLPQY.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/química , Juglans/química , Péptidos/química , Proteínas de Plantas/química , Hidrolisados de Proteína/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Sitios de Unión , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Unión Proteica
10.
J Sci Food Agric ; 98(9): 3416-3426, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29280148

RESUMEN

BACKGROUND: Bioactive casein peptides have attracted considerable attention for their applications in industry. However, there is little clarity regarding mass spectrometric profiles for peptides in enzymatic hydrolysates of casein produced under varying conditions. In this study, the compositions of the peptides from casein hydrolysates were compared for different enzyme/substrate ratio (E/S) and hydrolysis times. The toxicity, allergenicity and bioactivity of the identified peptides were assessed in silico. RESULTS: A total of 70 unique peptides were identified, and there were 28, 21, 13 and 8 peptides from αs1 -casein, αs2 -casein, ß-casein and κ-casein respectively. The peptide number decreased with the increase in E/S and hydrolysis time. Moreover, peptides with relative molecular mass Mr ranging from 1000 to 1500 Da occupied the highest proportion of 31.43%, and almost all of the peptides showed Mr less than 5000 Da. In silico analysis showed that all of the peptides were non-toxic and non-allergenic, and several of them were assessed by PeptideRanker as having a relatively high likelihood of being bioactive peptides. CONCLUSIONS: Composition of the peptides in the casein hydrolysates varied with the enzymolysis conditions. This study's results may facilitate the production of target bioactive peptides by controlling E/S and hydrolysis time, which is beneficial for the application of casein peptides in the functional food industry. © 2017 Society of Chemical Industry.


Asunto(s)
Alérgenos/inmunología , Caseínas/química , Péptidos/análisis , Secuencia de Aminoácidos , Caseínas/metabolismo , Cromatografía Líquida de Alta Presión , Simulación por Computador , Electroforesis en Gel de Poliacrilamida , Alimentos Funcionales , Hidrólisis , Péptidos/inmunología , Péptidos/toxicidad , Espectrometría de Masas en Tándem , Tripsina/metabolismo
11.
J Sci Food Agric ; 97(15): 5114-5122, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28425100

RESUMEN

BACKGROUND: Ruditapes philippinarum is nutrient-rich and widely-distributed, but little attention has been paid to the identification and characterization of the bioactive peptides in the bivalve. In the present study, we evaluated the peptides of the R. philippinarum that were enzymolysised by trypsin using a combination of ultra-performance liquid chromatography separation and electrospray ionization quadrupole time-of-flight tandem mass spectrometry, followed by data processing and sequence-similarity database searching. The potential allergenicity of the peptides was assessed in silico. RESULTS: The enzymolysis was performed under the conditions: E:S 3:100 (w/w), pH 9.0, 45 °C for 4 h. After separation and detection, the Swiss-Prot database and a Ruditapes philippinarum sequence database were used: 966 unique peptides were identified by non-error tolerant database searching; 173 peptides matching 55 precursor proteins comprised highly conserved cytoskeleton proteins. The remaining 793 peptides were identified from the R. philippinarum sequence database. The results showed that 510 peptides were labeled as allergens and 31 peptides were potential allergens; 425 peptides were predicted to be nonallergenic. CONCLUSION: The abundant peptide information contributes to further investigations of the structure and potential function of R. philippinarum. Additional in vitro studies are required to demonstrate and ensure the correct production of the hydrolysates for use in the food industry with respect to R. philippinarum. © 2017 Society of Chemical Industry.


Asunto(s)
Alérgenos/química , Bivalvos/química , Péptidos/química , Alérgenos/inmunología , Secuencia de Aminoácidos , Animales , Bivalvos/inmunología , Cromatografía Líquida de Alta Presión , Simulación por Computador , Datos de Secuencia Molecular , Mapeo Peptídico , Péptidos/inmunología , Espectrometría de Masa por Ionización de Electrospray , Tripsina/química
12.
J Agric Food Chem ; 72(1): 80-93, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38152984

RESUMEN

Traditional antibiotics are facing a tremendous challenge due to increased antimicrobial resistance; hence, there is an urgent need to find novel antibiotic alternatives. Milk protein-derived antimicrobial peptides (AMPs) are currently attracting substantial attention considering that they showcase an extensive spectrum of antimicrobial activities, with slower development of antimicrobial resistance and safety of raw materials. This review summarizes the molecular properties, and activity mechanisms and highlights the applications and limitations of AMPs derived from milk proteins comprehensively. Also the analytical technologies, especially bioinformatics methodologies, applied in the process of screening, identification, and mechanism illustration of AMPs were underlined. This review will give some ideas for further research and broadening of the applications of milk protein-derived AMPs in the food field.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Antibacterianos/farmacología , Proteínas de la Leche
13.
Food Chem ; 445: 138691, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38354646

RESUMEN

Milk fat globule membrane proteins (MFGMP) in human milks have positive effects on infant's health. As gestational diabetes mellitus (GDM) causes variations in MFGMP, it is essential to understand the effects of GDMon MFGMP. This study aims to investigate and compare the MFGMP (>3 months postpartum) of GDM and non-GDM (NGDM) women using four-dimensional-data-independent-acquisition proteomics technology. Principal component analysis shows significant differences in the MFGMP of GDM and NGDM women. A total of 4747 MFGMP were identified in maturehuman milk of GDM and NGDM women. Among these proteins, 174 differentially expressed proteins (DEPs) were identified in MFGM of GDM and NGDM women. Albumin (FC = 7.96) and transthyretin (FC = 2.57) which are related to insulin resistance and involved in thyroid hormone synthesis, are significantly up-regulated in MFGMP of GDM mothers indicating insulin resistance, imbalance of glucose homeostasis and poor glucose metabolism might persist in postpartum period.


Asunto(s)
Diabetes Gestacional , Glucolípidos , Glicoproteínas , Resistencia a la Insulina , Gotas Lipídicas , Embarazo , Femenino , Humanos , Leche Humana/metabolismo , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteómica , Proteínas de la Leche/metabolismo
14.
Microorganisms ; 12(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38674648

RESUMEN

Pathogenic biofilms provide a naturally favorable barrier for microbial growth and are closely related to the virulence of pathogens. Postbiotics from lactic acid bacteria (LAB) are secondary metabolites and cellular components obtained by inactivation of fermentation broth; they have a certain inhibitory effect on all stages of pathogen biofilms. Postbiotics from LAB have drawn attention because of their high stability, safety dose parameters, and long storage period, which give them a broad application prospect in the fields of food and medicine. The mechanisms of eliminating pathogen biofilms via postbiotics from LAB mainly affect the surface adhesion, self-aggregation, virulence, and QS of pathogens influencing interspecific and intraspecific communication. However, there are some factors (preparation process and lack of target) which can limit the antibiofilm impact of postbiotics. Therefore, by using a delivery carrier and optimizing process parameters, the effect of interfering factors can be eliminated. This review summarizes the concept and characteristics of postbiotics from LAB, focusing on their preparation technology and antibiofilm effect, and the applications and limitations of postbiotics in food processing and clinical treatment are also discussed.

15.
Int J Biol Macromol ; 269(Pt 1): 131873, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677699

RESUMEN

Here, we developed a nano-TiO2-nisin-modified chitosan composite packaging film and investigated its properties and antibacterial activity, as well as its effect on chilled pork preservation time. The results indicated that the preservation time of chilled pork coated with a nano-TiO2-nisin-modified chitosan film (including 0.7 g/L nano-TiO2, irradiated with ultraviolet light for 40 min, and dried for 6 h) followed by modified atmosphere packaging (50% CO2 + 50% N2) increased from 7 to 20 days at 4 °C. Both nano-TiO2 and nisin enhanced the mechanical strength of the chitosan film, and nisin promoted nano-TiO2 dispersion and compatibility in chitosan. Treatment with 0.4 g/L nano-TiO2 for 60 min considerably inhibited spoilage bacteria, particularly Acinetobacter johnnii XBB1 (A. johnnii XBB1). As nano-TiO2 concentration and photocatalytic time increased, K+, Ca2+, and Mg2+ leakage in A. johnnii XBB1 increased but Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities decreased. In A. johnnii XBB1, TiO2 significantly downregulated the expression of putrefaction-related genes such as cysM and inhibited cell self-regulation and membrane wall system repair. Therefore, our nano-TiO2-nisin-modified chitosan film could extend the shelf life without the addition of any chemical preservatives, demonstrating great potential for application in food preservation.


Asunto(s)
Quitosano , Embalaje de Alimentos , Conservación de Alimentos , Nisina , Titanio , Quitosano/química , Quitosano/farmacología , Titanio/química , Titanio/farmacología , Embalaje de Alimentos/métodos , Conservación de Alimentos/métodos , Nisina/farmacología , Nisina/química , Animales , Porcinos , Antibacterianos/farmacología , Antibacterianos/química , Nanocompuestos/química , Carne de Cerdo/microbiología
16.
Colloids Surf B Biointerfaces ; 238: 113929, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677155

RESUMEN

In recent years, with increasing emphasis on healthy, green, and sustainable consumption concepts, plant-based foods have gained popularity among consumers. As widely sourced plant-based raw materials, legume proteins are considered sustainable and renewable alternatives to animal proteins. However, legume proteins have limited functional properties, which hinder their application in food products. LAB fermentation is a relatively natural processing method that is safer than chemical/physical modification methods and can enrich the functional properties of legume proteins through biodegradation and modification. Therefore, changes in legume protein composition, structure, and functional properties and their related mechanisms during LAB fermentation are described. In addition, the specific enzymatic hydrolysis mechanisms of different LAB proteolytic systems on legume proteins are also focused in this review. The unique proteolytic systems of different LAB induce specific enzymatic hydrolysis of legume proteins, resulting in the production of hydrolysates with diverse functional properties, including solubility, emulsibility, gelability, and foamability, which are determined by the composition (peptide/amino acid) and structure (secondary/tertiary) of legume proteins after LAB fermentation. The correlation between LAB-specific enzymatic hydrolysis, protein composition and structure, and protein functional properties will assist in selecting legume protein raw materials and LAB strains for legume plant-based food products and expand the application of legume proteins in the food industry.


Asunto(s)
Fabaceae , Fermentación , Proteínas de Plantas , Hidrólisis , Fabaceae/química , Fabaceae/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Lactobacillales/metabolismo
17.
Curr Res Food Sci ; 8: 100749, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694558

RESUMEN

Nitrite has the potential risk of hypoxic poisoning or cancer in pickled food. In our previous study, Limosilactobacillus fermentum (L. fermentum) RC4 is effective in nitrite degradation by producing nitrite reductase B (NirB). To investigate the detailed mechanism from the genome, response, and regulation of NirB, the whole-genome sequence of L. fermentum RC4 was analyzed, the L. fermentum-EGFP-nirB with enhanced green fluorescent protein (EGFP) labeled the nitrite reductase large subunit nirB, and the recombined L. fermentum-NirB with overexpression NirB strain was conducted. The key genes within the dominant metabolism pathways may be involved in stress tolerance to regulate the degrading process. The green fluorescence density of EGFP indicated that NirB activity has a threshold and peaked under 300 mg/L nitrite concentration. NirB overexpressed in L. fermentum RC4 boosted the enzyme activity by 39.6% and the degradation rate by 10.5%, when fermented in 300 mg/L for 40 h, compared to the control group. RNA-seq detected 248 differential genes mainly enriched in carbohydrate, amino acid, and energy metabolism. The ackA gene for pyruvate metabolism and the mtnN gene for cysteine metabolism were up-regulated. NirB regulates these genes to produce acid and improve stress resistance for L. fermentum RC4 to accelerate nitrite degradation.

18.
Food Chem X ; 21: 101191, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38357367

RESUMEN

The study aimed to investigate the impact of water-soluble extract from Semen Ziziphi Spinosae (SZSE) on yogurt quality and understand the underlying mechanism. The results demonstrated that adding 0.5% (w/v) SZSE had a significant effect on reducing yogurt syneresis and resulted in a more compact and uniform casein gel. Notably, the co-fermented yogurt with binary probiotics (Lacticaseibacillus casei CGMCC1.5956 and Levilactobacillus brevis CGMCC1.5954) along with SZSE led to increased viable probiotics and a higher odor score (23.23). This effect might be attributed to the increased amino acid utilization by binary probiotics through biosynthesis of valine, leucine and isoleucine, metabolic pathways, and amino acid biosynthesis to produce amino acid derivatives such as N5-(l-1-carboxyethyl)-l-ornithine and diaminopyrimidine acid. The yogurt contained 79 volatile flavor compounds, with hexanoic acid, 2-heptanone, and 2-nonanone potentially contributing to the high odor scores. These findings have strategic implications for developing yogurt with high gel characteristics and distinctive flavor.

19.
RSC Adv ; 14(15): 10152-10160, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38544946

RESUMEN

Umami peptides are new ingredients for the condiment and seasoning industries, with healthy and nutrition characteristics, some of which were identified from aquatic proteins. This study aims to further explore novel umami peptides from Atlantic cod (Gadus morhua) by combining in silico, nano-HPLC-MS/MS, sensory evaluation, and electronic tongue analysis. Two novel peptides, Leu-Val-Asp-Lys-Leu (LVDKL) and Glu-Ser-Lys-Ile-Leu (ESKIL), from the myosin heavy chain of Atlantic cod (Gadus morhua), were screened and confirmed to have strong umami tastes with the thresholds of 0.427 mM and 0.574 mM, respectively. The molecular docking was adopted to explore the interactions between the umami peptides and the umami taste receptor T1R1/T1R3, which showed that the umami peptides interacted with T1R1/T1R3 mainly by electrostatic interaction, hydrogen bond interaction, and hydrophobic interaction. Furthermore, the physicochemical properties of the peptides were investigated by in silico methods and cell viability experiments. This study will provide a better understanding of the umami taste in Atlantic cod and will promote the development of condiments and seasonings.

20.
Food Res Int ; 170: 112959, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316007

RESUMEN

There is currently an increasing trend in the consumption of meat analogs and fat substitutes due to the health hazards by excessive consumption of meat. Simulating the texture and mouthfeel of meat through structured plant-derived polymers has become a popular processing method. In this review, the mechanical structuring technology of plant polymers for completely replacing real meat is mainly introduced in this review, which mainly focuses on the parameters and principles of mechanical equipment for the production of vegan meat. The difference in composition between plant meat and real meat is mainly reflected in the protein, and particular attention should be paid to the digestive characteristics of plant meat protein in the gastrointestinal tract. Therefore, the differences in the protein digestibility properties of meat analogs and real meat is discussed in this review, focusing primarily on protein digestibility and peptide/amino acid composition of mechanically structured vegan meats. In terms of fat substitutes for meat products, the types of plant polymer colloidal systems used for meat fat substitutes is comprehensively introduced, including emulsion, hydrogel and oleogel.


Asunto(s)
Sustitutos de Grasa , Proteolisis , Carne , Proteínas de Plantas , Polímeros , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA