Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Plant Cell ; 36(1): 65-84, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37738656

RESUMEN

Temperature is a major factor that regulates plant growth and phenotypic diversity. To ensure reproductive success at a range of temperatures, plants must maintain developmental stability of their sexual organs when exposed to temperature fluctuations. However, the mechanisms integrating plant floral organ development and temperature responses are largely unknown. Here, we generated barley and rice loss-of-function mutants in the SEPALLATA-like MADS-box gene MADS8. The mutants in both species form multiple carpels that lack ovules at high ambient temperatures. Tissue-specific markers revealed that HvMADS8 is required to maintain floral meristem determinacy and ovule initiation at high temperatures, and transcriptome analyses confirmed that temperature-dependent differentially expressed genes in Hvmads8 mutants predominantly associate with floral organ and meristem regulation. HvMADS8 temperature-responsive activity relies on increased binding to promoters of downstream targets, as revealed by a cleavage under targets and tagmentation (CUT&Tag) analysis. We also demonstrate that HvMADS8 directly binds to 2 orthologs of D-class floral homeotic genes to activate their expression. Overall, our findings revealed a new, conserved role for MADS8 in maintaining pistil number and ovule initiation in cereal crops, extending the known function of plant MADS-box proteins in floral organ regulation.


Asunto(s)
Grano Comestible , Genes Homeobox , Grano Comestible/genética , Temperatura , Proteínas de Plantas/metabolismo , Flores/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Meristema
2.
Proc Natl Acad Sci U S A ; 119(31): e2201350119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881796

RESUMEN

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus antigravitropic offset (AGO) mechanisms. Here we report a root angle regulatory gene termed ENHANCED GRAVITROPISM1 (EGT1) that encodes a putative AGO component, whose loss-of-function enhances root gravitropism. Mutations in barley and wheat EGT1 genes confer a striking root phenotype, where every root class adopts a steeper growth angle. EGT1 encodes an F-box and Tubby domain-containing protein that is highly conserved across plant species. Haplotype analysis found that natural allelic variation at the barley EGT1 locus impacts root angle. Gravitropic assays indicated that Hvegt1 roots bend more rapidly than wild-type. Transcript profiling revealed Hvegt1 roots deregulate reactive oxygen species (ROS) homeostasis and cell wall-loosening enzymes and cofactors. ROS imaging shows that Hvegt1 root basal meristem and elongation zone tissues have reduced levels. Atomic force microscopy measurements detected elongating Hvegt1 root cortical cell walls are significantly less stiff than wild-type. In situ analysis identified HvEGT1 is expressed in elongating cortical and stele tissues, which are distinct from known root gravitropic perception and response tissues in the columella and epidermis, respectively. We propose that EGT1 controls root angle by regulating cell wall stiffness in elongating root cortical tissue, counteracting the gravitropic machinery's known ability to bend the root via its outermost tissues. We conclude that root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism.


Asunto(s)
Productos Agrícolas , Gravitropismo , Hordeum , Proteínas de Plantas , Raíces de Plantas , Pared Celular/química , Productos Agrícolas/química , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Gravitropismo/genética , Hordeum/química , Hordeum/genética , Hordeum/crecimiento & desarrollo , Microscopía de Fuerza Atómica , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Raíces de Plantas/química , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Transcripción Genética
3.
Development ; 148(5)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526582

RESUMEN

Cereal grain develops from fertilised florets. Alterations in floret and grain development greatly influence grain yield and quality. Despite this, little is known about the underlying genetic control of these processes, especially in key temperate cereals such as barley and wheat. Using a combination of near-isogenic mutant comparisons, gene editing and genetic analyses, we reveal that HvAPETALA2 (HvAP2) controls floret organ identity, floret boundaries, and maternal tissue differentiation and elimination during grain development. These new roles of HvAP2 correlate with changes in grain size and HvAP2-dependent expression of specific HvMADS-box genes, including the B-sister gene, HvMADS29 Consistent with this, gene editing demonstrates that HvMADS29 shares roles with HvAP2 in maternal tissue differentiation. We also discovered that a gain-of-function HvAP2 allele masks changes in floret organ identity and grain size due to loss of barley LAXATUM.A/BLADE-ON-PETIOLE2 (HvBOP2) gene function. Taken together, we reveal novel pleiotropic roles and regulatory interactions for an AP2-like gene controlling floret and grain development in a temperate cereal.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Hordeum/metabolismo , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/metabolismo , Alelos , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Grano Comestible/anatomía & histología , Grano Comestible/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Edición Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Hordeum/crecimiento & desarrollo , Proteínas de Dominio MADS/genética , Mutagénesis , Fenotipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Plant J ; 110(6): 1681-1699, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35395116

RESUMEN

The barley cellulose synthase-like F (CslF) genes encode putative cell wall polysaccharide synthases. They are related to the cellulose synthase (CesA) genes involved in cellulose biosynthesis, and the CslD genes that influence root hair development. Although CslD genes are implicated in callose, mannan and cellulose biosynthesis, and are found in both monocots and eudicots, CslF genes are specific to the Poaceae. Recently the barley CslF3 (HvCslF3) gene was shown to be involved in the synthesis of a novel (1,4)-ß-linked glucoxylan, but it remains unclear whether this gene contributes to plant growth and development. Here, expression profiling using qRT-PCR and mRNA in situ hybridization revealed that HvCslF3 accumulates in the root elongation zone. Silencing HvCslF3 by RNAi was accompanied by slower root growth, linked with a shorter elongation zone and a significant reduction in root system size. Polymer profiling of the RNAi lines revealed a significant reduction in (1,4)-ß-linked glucoxylan levels. Remarkably, the heterologous expression of HvCslF3 in wild-type (Col-0) and root hair-deficient Arabidopsis mutants (csld3 and csld5) complemented the csld5 mutant phenotype, in addition to altering epidermal cell fate. Our results reveal a key role for HvCslF3 during barley root development and suggest that members of the CslD and CslF gene families have similar functions during root growth regulation.


Asunto(s)
Arabidopsis , Hordeum , Arabidopsis/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Hordeum/genética , Hordeum/metabolismo , Polisacáridos/metabolismo
5.
Development ; 147(23)2020 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-33158925

RESUMEN

In higher plants, the female germline is formed from the megaspore mother cell (MMC), a single cell in the premeiotic ovule. Previously, it was reported that mutants in the RNA-dependent DNA methylation (RdDM) pathway might be involved in restricting the female germline to a single nucellus cell. We show that the DRM methyltransferase double mutant drm1drm2 also presents ectopic enlarged cells, consistent with supernumerary MMC-like cells. In wild-type ovules, MMC differentiation requires SPOROCYTELESS/NOZZLE (SPL/NZZ), as demonstrated by the spl/nzz mutant failing to develop an MMC. We address the poorly understood upstream regulation of SPL/NZZ in ovules, showing that the RdDM pathway is important to restrict SPL/NZZ expression. In ago9, rdr6 and drm1drm2 mutants, SPL/NZZ is expressed ectopically, suggesting that the multiple MMC-like cells observed might be attributable to the ectopic expression of SPL/NZZ. We show that the ovule identity gene, SEEDSTICK, directly regulates AGO9 and RDR6 expression in the ovule and therefore indirectly regulates SPL/NZZ expression. A model is presented describing the network required to restrict SPL/NZZ expression to specify a single MMC.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Metilación de ADN/genética , Proteínas de Dominio MADS/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Arabidopsis/crecimiento & desarrollo , Proteínas Argonautas/genética , Regulación de la Expresión Génica de las Plantas/genética , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Metiltransferasas/genética , Mutación/genética , Óvulo Vegetal/genética , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , ARN/genética , ARN Polimerasa Dependiente del ARN/genética , Células Madre/citología
6.
New Phytol ; 237(6): 2136-2147, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36600397

RESUMEN

In cereal species, grain size is influenced by growth of the ovule integuments (seed coat), the spikelet hull (lemma and palea) and the filial endosperm. Whether a highly conserved ovule tissue, the nucellus, has any impact on grain size has remained unclear. Immunolabelling revealed that the barley nucellus comprises two distinct cell types that differ in terms of cell wall homogalacturonan (HG) accumulation. Transcriptional profiling of the nucellus identified two pectin methylesterase (PME) genes, OVULE PECTIN MODIFIER 1 (OPM1) and OPM2, which are expressed in the unfertilized ovule but absent from the seed. Ovules from an opm1 opm2 mutant and plants expressing an ovule-specific pectin methylesterase inhibitor (PMEI), exhibit reduced HG accumulation. This results in changes to ovule cell size and shape and ovules that are longer than wild-type (WT) controls. At grain maturity, this is manifested as significantly longer grain. These findings indicate that cell wall composition during ovule development acts to limit ovule and seed growth. The investigation of ovule PME and PMEI activity reveals an unexpected role of maternal tissues in controlling grain growth before fertilization, one that has been lacking from models exploring improvements in grain size.


Asunto(s)
Grano Comestible , Hordeum , Grano Comestible/genética , Óvulo Vegetal/metabolismo , Hordeum/genética , Semillas/genética , Pared Celular , Regulación de la Expresión Génica de las Plantas
7.
J Exp Bot ; 74(17): 5039-5056, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37279531

RESUMEN

Correct floral development is the result of a sophisticated balance of molecular cues. Floral mutants provide insight into the main genetic determinants that integrate these cues, as well as providing opportunities to assess functional variation across species. In this study, we characterize the barley (Hordeum vulgare) multiovary mutants mov2.g and mov1, and propose causative gene sequences: a C2H2 zinc-finger gene HvSL1 and a B-class gene HvMADS16, respectively. In the absence of HvSL1, florets lack stamens but exhibit functional supernumerary carpels, resulting in multiple grains per floret. Deletion of HvMADS16 in mov1 causes homeotic conversion of lodicules and stamens into bract-like organs and carpels that contain non-functional ovules. Based on developmental, genetic, and molecular data, we propose a model by which stamen specification in barley is defined by HvSL1 acting upstream of HvMADS16. The present work identifies strong conservation of stamen formation pathways with other cereals, but also reveals intriguing species-specific differences. The findings lay the foundation for a better understanding of floral architecture in Triticeae, a key target for crop improvement.


Asunto(s)
Hordeum , Animales , Hordeum/genética , Hordeum/metabolismo , Ovario/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores , Poaceae/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética
8.
Plant J ; 108(2): 509-527, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34382710

RESUMEN

Transition to the reproductive phase, inflorescence formation and flower development are crucial elements that ensure maximum reproductive success in a plant's life cycle. To understand the regulatory mechanisms underlying correct flower development in barley (Hordeum vulgare), we characterized the multiovary 5 (mov5.o) mutant. This mutant develops abnormal flowers that exhibit mosaic floral organs typified by multiple carpels at the total or partial expense of stamens. Genetic mapping positioned mov5 on the long arm of chromosome 2H, incorporating a region that encodes HvLFY, the barley orthologue of LEAFY from Arabidopsis. Sequencing revealed that, in mov5.o plants, HvLFY contains a single amino acid substitution in a highly conserved proline residue. CRISPR-mediated knockout of HvLFY replicated the mov5.o phenotype, suggesting that HvLFYmov5 represents a loss of function allele. In heterologous assays, the HvLFYmov5 polymorphism influenced protein-protein interactions and affinity for a putative binding site in the promoter of HvMADS58, a C-class MADS-box gene. Moreover, molecular analysis indicated that HvLFY interacts with HvUFO and regulates the expression of floral homeotic genes including HvMADS2, HvMADS4 and HvMADS16. Other distinct changes in expression differ from those reported in the rice LFY mutants apo2/rfl, suggesting that LFY function in the grasses is modulated in a species-specific manner. This pathway provides a key entry point for the study of LFY function and multiple ovary formation in barley, as well as cereal species in general.


Asunto(s)
Flores/crecimiento & desarrollo , Hordeum/fisiología , Proteínas de Plantas/genética , Sustitución de Aminoácidos , Proteínas de Arabidopsis/genética , Sitios de Unión , Mapeo Cromosómico , Cromosomas de las Plantas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN de Plantas/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , Hordeum/crecimiento & desarrollo , Inflorescencia/genética , Mutación , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética
9.
Plant J ; 104(4): 1009-1022, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32890421

RESUMEN

Barley (Hordeum vulgare L) grain is comparatively rich in (1,3;1,4)-ß-glucan, a source of fermentable dietary fibre that protects against various human health conditions. However, low grain (1,3;1,4)-ß-glucan content is preferred for brewing and distilling. We took a reverse genetics approach, using CRISPR/Cas9 to generate mutations in members of the Cellulose synthase-like (Csl) gene superfamily that encode known (HvCslF6 and HvCslH1) and putative (HvCslF3 and HvCslF9) (1,3;1,4)-ß-glucan synthases. Resultant mutations ranged from single amino acid (aa) substitutions to frameshift mutations causing premature stop codons, and led to specific differences in grain morphology, composition and (1,3;1,4)-ß-glucan content. (1,3;1,4)-ß-Glucan was absent in the grain of cslf6 knockout lines, whereas cslf9 knockout lines had similar (1,3;1,4)-ß-glucan content to wild-type (WT). However, cslf9 mutants showed changes in the abundance of other cell-wall-related monosaccharides compared with WT. Thousand grain weight (TGW), grain length, width and surface area were altered in cslf6 knockouts, and to a lesser extent TGW in cslf9 knockouts. cslf3 and cslh1 mutants had no effect on grain (1,3;1,4)-ß-glucan content. Our data indicate that multiple members of the CslF/H family fulfil important functions during grain development but, with the exception of HvCslF6, do not impact the abundance of (1,3;1,4)-ß-glucan in mature grain.


Asunto(s)
Hordeum/enzimología , Proteínas de Plantas/metabolismo , beta-Glucanos/metabolismo , Pared Celular/metabolismo , Grano Comestible , Edición Génica , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Hordeum/genética , Mutagénesis Sitio-Dirigida , Mutación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polisacáridos/metabolismo
10.
J Exp Bot ; 72(2): 320-340, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-32939545

RESUMEN

Eukaryotic cells rely on the accuracy and efficiency of vesicular traffic. In plants, disturbances in vesicular trafficking are well studied in quickly dividing root meristem cells or polar growing root hairs and pollen tubes. The development of the female gametophyte, a unique haploid reproductive structure located in the ovule, has received far less attention in studies of vesicular transport. Key molecules providing the specificity of vesicle formation and its subsequent recognition and fusion with the acceptor membrane are Rab proteins. Rabs are anchored to membranes by covalently linked geranylgeranyl group(s) that are added by the Rab geranylgeranyl transferase (RGT) enzyme. Here we show that Arabidopsis plants carrying mutations in the gene encoding the ß-subunit of RGT (rgtb1) exhibit severely disrupted female gametogenesis and this effect is of sporophytic origin. Mutations in rgtb1 lead to internalization of the PIN1 and PIN3 proteins from the basal membranes to vesicles in provascular cells of the funiculus. Decreased transport of auxin out of the ovule is accompanied by auxin accumulation in tissue surrounding the growing gametophyte. In addition, female gametophyte development arrests at the uni- or binuclear stage in a significant portion of the rgtb1 ovules. These observations suggest that communication between the sporophyte and the developing female gametophyte relies on Rab-dependent vesicular traffic of the PIN1 and PIN3 transporters and auxin efflux out of the ovule.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos , Óvulo Vegetal/genética , Tubo Polínico
11.
J Exp Bot ; 72(7): 2383-2402, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33421064

RESUMEN

We profiled the grain oligosaccharide content of 154 two-row spring barley genotypes and quantified 27 compounds, mainly inulin- and neoseries-type fructans, showing differential abundance. Clustering revealed two profile groups where the 'high' set contained greater amounts of sugar monomers, sucrose, and overall fructans, but lower fructosylraffinose. A genome-wide association study (GWAS) identified a significant association for the variability of two fructan types: neoseries-DP7 and inulin-DP9, which showed increased strength when applying a novel compound ratio-GWAS approach. Gene models within this region included three known fructan biosynthesis genes (fructan:fructan 1-fructosyltransferase, sucrose:sucrose 1-fructosyltransferase, and sucrose:fructan 6-fructosyltransferase). Two other genes in this region, 6(G)-fructosyltransferase and vacuolar invertase1, have not previously been linked to fructan biosynthesis and showed expression patterns distinct from those of the other three genes, including exclusive expression of 6(G)-fructosyltransferase in outer grain tissues at the storage phase. From exome capture data, several single nucleotide polymorphisms related to inulin- and neoseries-type fructan variability were identified in fructan:fructan 1-fructosyltransferase and 6(G)-fructosyltransferase genes. Co-expression analyses uncovered potential regulators of fructan biosynthesis including transcription factors. Our results provide the first scientific evidence for the distinct biosynthesis of neoseries-type fructans during barley grain maturation and reveal novel gene candidates likely to be involved in the differential biosynthesis of various types of fructan in barley.


Asunto(s)
Hexosiltransferasas , Hordeum , Secuencia de Aminoácidos , Fructanos , Estudio de Asociación del Genoma Completo , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Hordeum/genética , Hordeum/metabolismo , Vacuolas/metabolismo
12.
Plant Cell Rep ; 40(2): 393-403, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33388893

RESUMEN

KEY MESSAGE: Resistance conferred by the Cre8 locus of wheat prevents cereal cyst nematode feeding sites from reaching and invading root metaxylem vessels. Cyst nematodes develop syncytial feeding sites within plant roots. The success of these sites is affected by host plant resistance. In wheat (Triticum aestivum L.), 'Cre' loci affect resistance against the cereal cyst nematode (CCN) Heterodera avenae. To investigate how one of these loci (Cre8, on chromosome 6B) confers resistance, CCN-infected root tissue from susceptible (-Cre8) and resistant (+Cre8) wheat plants was examined using confocal microscopy and laser ablation tomography. Confocal analysis of transverse sections showed that feeding sites in the roots of -Cre8 plants were always adjacent to metaxylem vessels, contained many intricate 'web-like' cell walls, and sometimes 'invaded' metaxylem vessels. In contrast, feeding sites in the roots of +Cre8 plants were usually not directly adjacent to metaxylem vessels, had few inner cell walls and did not 'invade' metaxylem vessels. Models based on data from laser ablation tomography confirmed these observations. Confocal analysis of longitudinal sections revealed that CCN-induced xylem modification that had previously been reported for susceptible (-Cre8) wheat plants is less extreme in resistant (+Cre8) plants. Application of a lignin-specific stain revealed that secondary thickening around xylem vessels in CCN-infected roots was greater in +Cre8 plants than in -Cre8 plants. Collectively, these results indicate that Cre8 resistance in wheat acts by preventing cyst nematode feeding sites from reaching and invading root metaxylem vessels.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/metabolismo , Triticum/parasitología , Tylenchida/fisiología , Animales , Pared Celular/parasitología , Pared Celular/ultraestructura , Susceptibilidad a Enfermedades , Sitios Genéticos , Imagenología Tridimensional , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Raíces de Plantas/ultraestructura , Triticum/genética , Triticum/ultraestructura , Xilema/genética , Xilema/parasitología , Xilema/ultraestructura
13.
Int J Mol Sci ; 22(15)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34360673

RESUMEN

Auxin is a key regulator of plant development affecting the formation and maturation of reproductive structures. The apoplastic route of auxin transport engages influx and efflux facilitators from the PIN, AUX and ABCB families. The polar localization of these proteins and constant recycling from the plasma membrane to endosomes is dependent on Rab-mediated vesicular traffic. Rab proteins are anchored to membranes via posttranslational addition of two geranylgeranyl moieties by the Rab Geranylgeranyl Transferase enzyme (RGT), which consists of RGTA, RGTB and REP subunits. Here, we present data showing that seed development in the rgtb1 mutant, with decreased vesicular transport capacity, is disturbed. Both pre- and post-fertilization events are affected, leading to a decrease in seed yield. Pollen tube recognition at the stigma and its guidance to the micropyle is compromised and the seed coat forms incorrectly. Excess auxin in the sporophytic tissues of the ovule in the rgtb1 plants leads to an increased tendency of autonomous endosperm formation in unfertilized ovules and influences embryo development in a maternal sporophytic manner. The results show the importance of vesicular traffic for sexual reproduction in flowering plants, and highlight RGTB1 as a key component of sporophytic-filial signaling.


Asunto(s)
Arabidopsis/enzimología , Semillas/enzimología , Transducción de Señal , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Mutación , Tubo Polínico/fisiología , Semillas/crecimiento & desarrollo , Semillas/metabolismo
14.
Plant Mol Biol ; 103(1-2): 91-111, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32043226

RESUMEN

KEY MESSAGE: Auxin treatment of grape (Vitis vinifera L.) berries delays ripening by inducing changes in gene expression and cell wall metabolism and could combat some deleterious climate change effects. Auxins are inhibitors of grape berry ripening and their application may be useful to delay harvest to counter effects of climate change. However, little is known about how this delay occurs. The expression of 1892 genes was significantly changed compared to the control during a 48 h time-course where the auxin 1-naphthaleneacetic acid (NAA) was applied to pre-veraison grape berries. Principal component analysis showed that the control and auxin-treated samples were most different at 3 h post-treatment when approximately three times more genes were induced than repressed by NAA. There was considerable cross-talk between hormone pathways, particularly between those of auxin and ethylene. Decreased expression of genes encoding putative cell wall catabolic enzymes (including those involved with pectin) and increased expression of putative cellulose synthases indicated that auxins may preserve cell wall structure. This was confirmed by immunochemical labelling of berry sections using antibodies that detect homogalacturonan (LM19) and methyl-esterified homogalacturonan (LM20) and by labelling with the CMB3a cellulose-binding module. Comparison of the auxin-induced changes in gene expression with the pattern of these genes during berry ripening showed that the effect on transcription is a mix of changes that may specifically alter the progress of berry development in a targeted manner and others that could be considered as non-specific changes. Several lines of evidence suggest that cell wall changes and associated berry softening are the first steps in ripening and that delaying cell expansion can delay ripening providing a possible mechanism for the observed auxin effects.


Asunto(s)
Pared Celular/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Células Vegetales/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Vitis/efectos de los fármacos , Aumento de la Célula/efectos de los fármacos , Pared Celular/genética , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Naftalenoacéticos/farmacología , Células Vegetales/fisiología , Tiempo , Vitis/crecimiento & desarrollo
15.
J Exp Bot ; 71(12): 3428-3436, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32103263

RESUMEN

Awns are bristle-like structures formed at the tip of the lemma on the florets of some cereal grasses. Wild-type wheat is awned, but awnletted and awnless variants have been selected and nowadays all forms are cultivated. In this study, we dissected the genetic control underlying variation of this characteristic feature by association mapping in a large panel of 1110 winter wheat cultivars of worldwide origin. We identified the B1 (Tipped 1) locus on chromosome 5A as the major determinant of awnlessness globally. Using a combination of fine-mapping and expression analysis, we identified a putative C2H2 zinc finger protein with an EAR domain, characteristic of transcriptional repressors, as a likely candidate for Tipped 1. This gene was found to be up-regulated in awnless B1 compared with awned b1 plants, indicating that misexpression of this transcriptional regulator may contribute to the reduction of awn length in B1 plants. Taken together, our study provides an entry point towards a better molecular understanding of the evolution of morphological features in cereals through selection and breeding.


Asunto(s)
Dedos de Zinc CYS2-HIS2 , Triticum , Fitomejoramiento , Estructuras de las Plantas , Poaceae , Triticum/genética
16.
J Exp Bot ; 71(1): 138-153, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31536111

RESUMEN

In cereal grain, sucrose is converted into storage carbohydrates: mainly starch, fructan, and mixed-linkage (1,3;1,4)-ß-glucan (MLG). Previously, endosperm-specific overexpression of the HvCslF6 gene in hull-less barley was shown to result in high MLG and low starch content in mature grains. Morphological changes included inwardly elongated aleurone cells, irregular cell shapes of peripheral endosperm, and smaller starch granules of starchy endosperm. Here we explored the physiological basis for these defects by investigating how changes in carbohydrate composition of developing grain impact mature grain morphology. Augmented MLG coincided with increased levels of soluble carbohydrates in the cavity and endosperm at the storage phase. Transcript levels of genes relating to cell wall, starch, sucrose, and fructan metabolism were perturbed in all tissues. The cell walls of endosperm transfer cells (ETCs) in transgenic grain were thinner and showed reduced mannan labelling relative to the wild type. At the early storage phase, ruptures of the non-uniformly developed ETCs and disorganization of adjacent endosperm cells were observed. Soluble sugars accumulated in the developing grain cavity, suggesting a disturbance of carbohydrate flow from the cavity towards the endosperm, resulting in a shrunken mature grain phenotype. Our findings demonstrate the importance of regulating carbohydrate partitioning in maintenance of grain cellularization and filling processes.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Grano Comestible/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Proteínas de Plantas/genética , Transporte Biológico , Grano Comestible/genética , Endospermo/genética , Endospermo/crecimiento & desarrollo , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo
17.
Theor Appl Genet ; 133(3): 981-991, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31953547

RESUMEN

KEY MESSAGE: The cuticle is the plant's barrier against abiotic and biotic stresses, and the deposition of epicuticular wax crystals results in the scattering of light, an effect termed glaucousness. Here, we dissect the genetic architecture of flag leaf glaucousness in wheat toward a future targeted design of the cuticle. The cuticle serves as a barrier that protects plants against abiotic and biotic stresses. Differences in cuticle composition can be detected by the scattering of light on epicuticular wax crystals, which causes a phenotype termed glaucousness. In this study, we dissected the genetic architecture of flag leaf glaucousness in a panel of 1106 wheat cultivars of global origin. We observed a large genotypic variation, but the geographic pattern suggests that other wax layer characteristics besides glaucousness may be important in conferring tolerance to abiotic stresses such as heat and drought. Genome-wide association mapping identified two major quantitative trait loci (QTL) on chromosomes 3A and 2B. The latter corresponds to the W1 locus, but further characterization revealed that it is likely to contain additional QTL. The same holds true for the major QTL on 3A, which was also found to show an epistatic interaction with another locus located a few centiMorgan distal to it. Genome-wide prediction and the identification of a few additional putative QTL revealed that small-effect QTL also contribute to the trait. Collectively, our results illustrate the complexity of the genetic control of flag leaf glaucousness, with additive effects and epistasis, and lay the foundation for the cloning of the underlying genes toward a more targeted design of the cuticle by plant breeding.


Asunto(s)
Hojas de la Planta/genética , Estrés Fisiológico/genética , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Epistasis Genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Fenotipo , Fitomejoramiento , Hojas de la Planta/efectos de la radiación , Sitios de Carácter Cuantitativo , Triticum/efectos de la radiación , Ceras/metabolismo , Ceras/efectos de la radiación
18.
BMC Plant Biol ; 19(1): 104, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30885140

RESUMEN

BACKGROUND: During pollen wall formation in flowering plants, a conserved metabolon consisting of acyl-CoA synthetase (ACOS), polyketide synthase (PKS) and tetraketide α-pyrone reductase (TKPR), is required for sporopollenin synthesis. Despite this, the precise function of each of these components in different species remains unclear. RESULTS: In this study, we characterized the function of OsTKPR1, a rice orthologue of Arabidopsis TKPR1. Loss of function of OsTKPR1 delayed tapetum degradation, reduced the levels of anther cuticular lipids, and impaired Ubisch body and pollen exine formation, resulting in complete male sterility. In addition, the phenylpropanoid pathway in mutant anthers was remarkably altered. Localization studies suggest that OsTKPR1 accumulates in the endoplasmic reticulum, while specific accumulation of OsTKPR1 mRNA in the anther tapetum and microspores is consistent with its function in anther and pollen wall development. CONCLUSIONS: Our results show that OsTKPR1 is indispensable for anther cuticle development and pollen wall formation in rice, providing new insights into the biochemical mechanisms of the conserved sporopollenin metabolon in flowering plants.


Asunto(s)
Flores/crecimiento & desarrollo , Oryza/genética , Proteínas de Plantas/fisiología , Flores/metabolismo , Flores/ultraestructura , Metabolismo de los Lípidos , Mutación , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Oryza/ultraestructura , Fenotipo
19.
Plant Physiol ; 177(3): 1027-1049, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29844228

RESUMEN

Apomixis results in asexual seed formation where progeny are identical to the maternal plant. In ovules of apomictic species of the Hieracium subgenus Pilosella, meiosis of the megaspore mother cell generates four megaspores. Aposporous initial (AI) cells form during meiosis in most ovules. The sexual pathway terminates during functional megaspore (FM) differentiation, when an enlarged AI undergoes mitosis to form an aposporous female gametophyte. Then, the mitotically programmed FM dies along with the three other megaspores by unknown mechanisms. Transcriptomes of laser-dissected AIs, ovule cells, and ovaries from apomicts and AI-deficient mutants were analyzed to understand the pathways involved. The steps leading to AI mitosis and sexual pathway termination were determined using antibodies against arabinogalactan protein epitopes found to mark both sexual and aposporous female gametophyte lineages at inception. At most, four AIs differentiated near developing megaspores. The first expanding AI cell to contact the FM formed a functional AI that underwent mitosis soon after megaspore degeneration. Transcriptome analyses indicated that the enlarged, laser-captured AIs were arrested in the S/G2 phase of the cell cycle and were metabolically active. Further comparisons with AI-deficient mutants showed that AIs were enriched in transcripts encoding homologs of genes involved in, and potentially antagonistic to, known FM specification pathways. We propose that AI and FM cell contact provides cues required for AI mitosis and megaspore degeneration. Specific candidates to further interrogate AI-FM interactions were identified here and include Hieracium arabinogalactan protein family genes.


Asunto(s)
Apomixis/fisiología , Asteraceae/fisiología , Óvulo Vegetal/citología , Óvulo Vegetal/fisiología , Proteínas de Plantas/genética , Asteraceae/genética , Metabolismo de los Hidratos de Carbono/genética , Ciclo Celular/genética , Enzimas/genética , Enzimas/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Mitosis , Mutación , Filogenia , Células Vegetales/inmunología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Nicotiana/genética
20.
J Integr Plant Biol ; 61(3): 310-336, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30474296

RESUMEN

Grain production in cereal crops depends on the stable formation of male and female gametes in the flower. In most angiosperms, the female gamete is produced from a germline located deep within the ovary, protected by several layers of maternal tissue, including the ovary wall, ovule integuments and nucellus. In the field, germline formation and floret fertility are major determinants of yield potential, contributing to traits such as seed number, weight and size. As such, stimuli affecting the timing and duration of reproductive phases, as well as the viability, size and number of cells within reproductive organs can significantly impact yield. One key stimulant is the phytohormone auxin, which influences growth and morphogenesis of female tissues during gynoecium development, gametophyte formation, and endosperm cellularization. In this review we consider the role of the auxin signaling pathway during ovule and seed development, first in the context of Arabidopsis and then in the cereals. We summarize the gene families involved and highlight distinct expression patterns that suggest a range of roles in reproductive cell specification and fate. This is discussed in terms of seed production and how targeted modification of different tissues might facilitate improvements.


Asunto(s)
Arabidopsis/metabolismo , Grano Comestible/metabolismo , Ácidos Indolacéticos/metabolismo , Óvulo Vegetal/metabolismo , Semillas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA