Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 229(6): 3534-3548, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33289112

RESUMEN

Flowering time is a key adaptive and agronomic trait. In Arabidopsis, natural variation in expression levels of the floral repressor FLOWERING LOCUS C (FLC) leads to differences in vernalization. In Brassica napus there are nine copies of FLC. Here, we study how these multiple FLC paralogues determine vernalization requirement as a system. We collected transcriptome time series for Brassica napus spring, winter, semi-winter, and Siberian kale crop types. Modelling was used to link FLC expression dynamics to floral response following vernalization. We show that relaxed selection pressure has allowed expression of FLC paralogues to diverge, resulting in variation of FLC expression during cold treatment between paralogues and accessions. We find that total FLC expression dynamics best explains differences in cold requirement between cultivars, rather than expression of specific FLC paralogues. The combination of multiple FLC paralogues with different expression dynamics leads to rich behaviour in response to cold and a wide range of vernalization requirements in B. napus. We find evidence for different strategies to determine the response to cold in existing winter rapeseed accessions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassica napus , Brassica rapa , Brassica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brassica/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo
2.
Plant Biotechnol J ; 18(12): 2466-2481, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32452611

RESUMEN

Winter, spring and biennial varieties of Brassica napus that vary in vernalization requirement are grown for vegetable and oil production. Here, we show that the obligate or facultative nature of the vernalization requirement in European winter oilseed rape is determined by allelic variation at a 10 Mbp region on chromosome A02. This region includes orthologues of the key floral regulators FLOWERING LOCUS C (BnaFLC.A02) and FLOWERING LOCUS T (BnaFT.A02). Polymorphism at BnaFLC.A02 and BnaFT.A02, mostly in cis-regulatory regions, results in distinct gene expression dynamics in response to vernalization treatment. Our data suggest allelic variation at BnaFT.A02 is associated with flowering time in the absence of vernalization, while variation at BnaFLC.A02 is associated with flowering time under vernalizing conditions. We hypothesize selection for BnaFLC.A02 and BnaFT.A02 gene expression variation has facilitated the generation of European winter oilseed rape varieties that are adapted to different winter climates. This knowledge will allow for the selection of alleles of flowering time regulators that alter the vernalization requirement of oilseed rape, informing the generation of new varieties with adapted flowering times and improved yields.


Asunto(s)
Brassica napus , Alelos , Brassica napus/genética , Flores , Estaciones del Año
3.
Ecol Lett ; 22(3): 486-497, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30618173

RESUMEN

Dioecy has often broken down in flowering plants, yielding functional hermaphroditism. We reasoned that evolutionary transitions from dioecy to functional hermaphroditism must overcome an inertia of sexual dimorphism, because modified males or females will express the opposite sexual function for which their phenotypes have been optimised. We tested this prediction by assessing the siring success of monoecious individuals of the plant Mercurialis annua with an acquired male function but that are phenotypically still female-like. We found that pollen dispersed by female-like monoecious individuals was ~ 1/3 poorer at siring outcrossed offspring than pollen from monoecious individuals with an alternative male-like inflorescence. We conclude that whereas dioecy might evolve from functional hermaphroditism by conferring upon individuals certain benefits of sexual specialisation, reversion from a strategy of separate sexes to one of combined sexes must overcome constraints imposed by the advantages of sexual dimorphism. The breakdown of dioecy must therefore often be limited to situations in which outcrossing cannot be maintained and where selection favours a capacity for inbreeding by functional hermaphrodites.


Asunto(s)
Evolución Biológica , Magnoliopsida , Caracteres Sexuales , Femenino , Humanos , Masculino , Fitomejoramiento , Polen , Reproducción
4.
Quant Plant Biol ; 2: e4, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37077206

RESUMEN

Comparative transcriptomics can be used to translate an understanding of gene regulatory networks from model systems to less studied species. Here, we use RNA-Seq to determine and compare gene expression dynamics through the floral transition in the model species Arabidopsis thaliana and the closely related crop Brassica rapa. We find that different curve registration functions are required for different genes, indicating that there is no single common 'developmental time' between Arabidopsis and B. rapa. A detailed comparison between Arabidopsis and B. rapa and between two B. rapa accessions reveals different modes of regulation of the key floral integrator SOC1, and that the floral transition in the B. rapa accessions is triggered by different pathways. Our study adds to the mechanistic understanding of the regulatory network of flowering time in rapid cycling B. rapa and highlights the importance of registration methods for the comparison of developmental gene expression data.

5.
Elife ; 92020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32902380

RESUMEN

In Arabidopsis thaliana, winter is registered during vernalization through the temperature-dependent repression and epigenetic silencing of floral repressor FLOWERING LOCUS C (FLC). Natural Arabidopsis accessions show considerable variation in vernalization. However, which aspect of the FLC repression mechanism is most important for adaptation to different environments is unclear. By analysing FLC dynamics in natural variants and mutants throughout winter in three field sites, we find that autumnal FLC expression, rather than epigenetic silencing, is the major variable conferred by the distinct Arabidopsis FLChaplotypes. This variation influences flowering responses of Arabidopsis accessions resulting in an interplay between promotion and delay of flowering in different climates to balance survival and, through a post-vernalization effect, reproductive output. These data reveal how expression variation through non-coding cis variation at FLC has enabled Arabidopsis accessions to adapt to different climatic conditions and year-on-year fluctuations.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Haplotipos/genética , Proteínas de Dominio MADS , Estaciones del Año , Arabidopsis/fisiología , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación hacia Abajo , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Dominio MADS/análisis , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Mutación/genética , Suecia , Reino Unido
6.
Curr Biol ; 29(24): 4300-4306.e2, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31813609

RESUMEN

Plants with winter annual life history germinate in summer or autumn and require a period of prolonged winter cold to initiate flowering, known as vernalization. In the Brassicaceae, the requirement for vernalization is conferred by high expression of orthologs of the FLOWERING LOCUS C (FLC) gene, the expression of which is known to be silenced by prolonged exposure to winter-like temperatures [1]. Based on a wealth of vernalization experiments, typically carried out in the range of 5°C-10°C, we would expect field environments during winter to induce flowering in crops with winter annual life history. Here, we show that, in the case of winter oilseed rape, expression of multiple FLC orthologs declines not during winter but predominantly during October when the average air temperature is 10°C-15°C. We further demonstrate that plants proceed through the floral transition in early November and overwinter as inflorescence meristems, which complete floral development in spring. To validate the importance of pre-winter temperatures in flowering time control, we artificially simulated climate warming in field trial plots in October. We found that increasing the temperature by 5°C in October results in raised FLC expression and delays the floral transition by 3 weeks but only has a mild effect on flowering date the following spring. Our work shows that winter annuals overwinter as a floral bud in a manner that resembles perennials and highlights the importance of studying signaling events in the field for understanding how plants transition to flowering under real environmental conditions.


Asunto(s)
Brassica napus/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Temperatura , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica/crecimiento & desarrollo , Brassica napus/genética , Frío , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA