Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochem J ; 477(16): 2981-2998, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32722762

RESUMEN

In cAMP-Protein Kinase A (PKA) signaling, A-kinase anchoring protein scaffolds assemble PKA in close proximity to phosphodiesterases (PDE), kinase-substrates to form signaling islands or 'signalosomes'. In its basal state, inactive PKA holoenzyme (R2:C2) is activated by binding of cAMP to regulatory (R)-subunits leading to dissociation of active catalytic (C)-subunits. PDEs hydrolyze cAMP-bound to the R-subunits to generate 5'-AMP for termination and resetting the cAMP signaling. Mechanistic basis for cAMP signaling has been derived primarily by focusing on the proteins in isolation. Here, we set out to simulate cAMP signaling activation-termination cycles in a signalosome-like environment with PDEs and PKA subunits in close proximity to each other. Using a combination of fluorescence polarization and amide hydrogen exchange mass spectrometry with regulatory (RIα), C-subunit (Cα) and PDE8 catalytic domain, we have tracked movement of cAMP through activation-termination cycles. cAMP signaling operates as a continuum of four phases: (1) Activation and dissociation of PKA into R- and C-subunits by cAMP and facilitated by substrate (2) PDE recruitment to R-subunits (3) Hydrolysis of cAMP to 5'-AMP (4) Reassociation of C-subunit to 5'-AMP-bound-RIα in the presence of excess ATP to reset cAMP signaling to form the inactive PKA holoenzyme. Our results demonstrate that 5'-AMP is not merely a passive hydrolysis end-product of PDE action. A 'ligand-free' state R subunit does not exist in signalosomes as previously assumed. Instead the R-subunit toggles between cAMP- or 5'-AMP bound forms. This highlights, for the first time, the importance of 5'-AMP in promoting adaptation and uncovers adenylate control in cAMP signaling.


Asunto(s)
Adenosina Monofosfato/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Dominio Catalítico , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Holoenzimas , Hidrolasas Diéster Fosfóricas/genética , Transducción de Señal
2.
Int J Mol Sci ; 22(10)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063491

RESUMEN

Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides to modulate multiple signaling events in cells. PDEs are recognized to actively associate with cyclic nucleotide receptors (protein kinases, PKs) in larger macromolecular assemblies referred to as signalosomes. Complexation of PDEs with PKs generates an expanded active site that enhances PDE activity. This facilitates signalosome-associated PDEs to preferentially catalyze active hydrolysis of cyclic nucleotides bound to PKs and aid in signal termination. PDEs are important drug targets, and current strategies for inhibitor discovery are based entirely on targeting conserved PDE catalytic domains. This often results in inhibitors with cross-reactivity amongst closely related PDEs and attendant unwanted side effects. Here, our approach targeted PDE-PK complexes as they would occur in signalosomes, thereby offering greater specificity. Our developed fluorescence polarization assay was adapted to identify inhibitors that block cyclic nucleotide pockets in PDE-PK complexes in one mode and disrupt protein-protein interactions between PDEs and PKs in a second mode. We tested this approach with three different systems-cAMP-specific PDE8-PKAR, cGMP-specific PDE5-PKG, and dual-specificity RegA-RD complexes-and ranked inhibitors according to their inhibition potency. Targeting PDE-PK complexes offers biochemical tools for describing the exquisite specificity of cyclic nucleotide signaling networks in cells.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Inhibidores de Fosfodiesterasa/farmacología , Extractos Vegetales/farmacología , Proteínas Quinasas/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Dominio Catalítico , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Polarización de Fluorescencia , Terapia Molecular Dirigida , Complejos Multiproteicos/metabolismo , Nucleótidos Cíclicos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Especificidad por Sustrato
3.
Anal Chem ; 89(15): 7876-7885, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28628309

RESUMEN

Orthosteric sites on proteins are formed typically from noncontiguous interacting sites in three-dimensional space where the composite binding interaction of a biological ligand is mediated by multiple synergistic interactions of its constituent functional groups. Through these multiple interactions, ligands stabilize both the ligand binding site and the local secondary structure. However, relative energetic contributions of the individual contacts in these protein-ligand interactions are difficult to resolve. Deconvolution of the contributions of these various functional groups in natural inhibitors/ligand would greatly aid in iterative fragment-based drug discovery (FBDD). In this study, we describe an approach of progressive unfolding of a target protein using a gradient of denaturant urea to reveal the individual energetic contributions of various ligand-functional groups to the affinity of the entire ligand. Through calibrated unfolding of two protein-ligand systems: cAMP-bound regulatory subunit of Protein Kinase A (RIα) and IBMX-bound phosphodiesterase8 (PDE8), monitored by amide hydrogen-deuterium exchange mass spectrometry, we show progressive disruption of individual orthosteric contacts in the ligand binding sites, allowing us to rank the energetic contributions of these individual interactions. In the two cAMP-binding sites of RIα, exocyclic phosphate oxygens of cAMP were identified to mediate stronger interactions than ribose 2'-OH in both the RIα-cAMP binding interfaces. Further, we have also ranked the relative contributions of the different functional groups of IBMX based on their interactions with the orthosteric residues of PDE8. This strategy for deconstruction of individual binding sites and identification of the strongest functional group interaction in enzyme orthosteric sites offers a rational starting point for FBDD.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ligandos , Espectrometría de Masas , 3',5'-AMP Cíclico Fosfodiesterasas/química , Sitios de Unión , Cromatografía Líquida de Alta Presión , AMP Cíclico/química , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Medición de Intercambio de Deuterio , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Desplegamiento Proteico
4.
Elife ; 122024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787378

RESUMEN

Severe dengue infections are characterized by endothelial dysfunction shown to be associated with the secreted nonstructural protein 1 (sNS1), making it an attractive vaccine antigen and biotherapeutic target. To uncover the biologically relevant structure of sNS1, we obtained infection-derived sNS1 (isNS1) from dengue virus (DENV)-infected Vero cells through immunoaffinity purification instead of recombinant sNS1 (rsNS1) overexpressed in insect or mammalian cell lines. We found that isNS1 appeared as an approximately 250 kDa complex of NS1 and ApoA1 and further determined the cryoEM structures of isNS1 and its complex with a monoclonal antibody/Fab. Indeed, we found that the major species of isNS1 is a complex of the NS1 dimer partially embedded in a high-density lipoprotein (HDL) particle. Crosslinking mass spectrometry studies confirmed that the isNS1 interacts with the major HDL component ApoA1 through interactions that map to the NS1 wing and hydrophobic domains. Furthermore, our studies demonstrated that the sNS1 in sera from DENV-infected mice and a human patient form a similar complex as isNS1. Our results report the molecular architecture of a biological form of sNS1, which may have implications for the molecular pathogenesis of dengue.


Asunto(s)
Virus del Dengue , Dengue , Lipoproteínas HDL , Proteínas no Estructurales Virales , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Animales , Virus del Dengue/genética , Virus del Dengue/metabolismo , Chlorocebus aethiops , Ratones , Humanos , Lipoproteínas HDL/metabolismo , Células Vero , Dengue/virología , Dengue/metabolismo , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/química , Multimerización de Proteína , Microscopía por Crioelectrón
5.
Front Mol Biosci ; 10: 1202268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808519

RESUMEN

Acrodysostosis represents a group of rare genetic disorders characterized by defective skeletal development and is often accompanied by intellectual disabilities. Mutations in the 3'5'cyclic AMP (cAMP)-dependent protein kinase (PKA) type I regulatory subunit isoform α (RIα) and phosphodiesterase (PDE) PDE4D have both been implicated in impaired PKA regulation in acrodysostosis. How mutations on PDEs and RIα interfere with the regulation of cAMP-PKA signaling is not understood. cAMP-PKA signaling can be described in two phases. In the activation phase, cAMP binding to RIα dissociates the free C-subunit (Catalytic subunit). PDEs hydrolyze cAMP bound to RIα, priming the cAMP-free RIα for reassociation with the C-subunit, thereby completing one PKA activation cycle. Signal termination is thus critical for resetting PKA to its basal state and promoting adaptation to hormonal hyperstimulation. This proceeds through formation of a transient signal termination RIα: PDE complex that facilitates cAMP channeling from the cAMP-binding domain of RIα to the catalytic site of PDE. Signal termination of cAMP-PKA proceeds in three steps: Step 1) Channeling: translocation of cAMP from the CNB of RIα to the PDE catalytic site for hydrolysis. Step 2) Processivity: binding of free cAMP from the cytosol at both CNBs of RIα. Step 3) Product (5'AMP) release from the PDE hydrolysis site through competitive displacement by a new molecule of cAMP that triggers subsequent activation cycles of PKA. We have identified the molecular basis for two acrodysostosis mutants, PDE (PDE8 T690P) and RIα (T207A), that both allosterically impair cAMP-PKA signal termination. A combination of amide hydrogen/deuterium exchange mass spectrometry (HDXMS) and fluorescence polarization (FP) reveals that PDE8 T690P and RIα T207A both blocked processive hydrolysis of cAMP by interfering with competitive displacement of product 5'AMP release from the nucleotide channel at the end of each round of cAMP hydrolysis. While T690P blocked product 5'AMP release from the PDE, T207A greatly slowed the release of the substrate from RIα. These results highlight the role of processivity in cAMP hydrolysis by RIα: PDE termination complexes for adaptation to cAMP from GPCR hyperstimulation. Impairment of the signal termination process provides an alternate molecular basis for acrodysostosis.

6.
Structure ; 30(8): 1062-1074.e4, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35660160

RESUMEN

The COVID-19 pandemic has prompted a rapid response in vaccine and drug development. Herein, we modeled a complete membrane-embedded SARS-CoV-2 spike glycoprotein and used molecular dynamics simulations with benzene probes designed to enhance discovery of cryptic pockets. This approach recapitulated lipid and host metabolite binding sites previously characterized by cryo-electron microscopy, revealing likely ligand entry routes, and uncovered a novel cryptic pocket with promising druggable properties located underneath the 617-628 loop. A full representation of glycan moieties was essential to accurately describe pocket dynamics. A multi-conformational behavior of the 617-628 loop in simulations was validated using hydrogen-deuterium exchange mass spectrometry experiments, supportive of opening and closing dynamics. The pocket is the site of multiple mutations associated with increased transmissibility found in SARS-CoV-2 variants of concern including Omicron. Collectively, this work highlights the utility of the benzene mapping approach in uncovering potential druggable sites on the surface of SARS-CoV-2 targets.


Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Benceno , Microscopía por Crioelectrón , Simulación de Dinámica Molecular , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
7.
J Immunother Cancer ; 10(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35131861

RESUMEN

BACKGROUND: Despite significant progress in cancer immunotherapy in recent years, resistance to existing immune checkpoint therapies (ICT) is common. V-domain Ig suppressor of T cell activation (VISTA), a predominantly myeloid immune checkpoint regulator, represents a promising therapeutic target due to its role in suppressing proinflammatory antitumor responses in myeloid-enriched tumor microenvironments. However, uncertainty around the cognate VISTA ligand has made the development of effective anti-VISTA antibodies challenging. The expression of VISTA on normal immune cell subtypes argues for a neutralizing non-depleting antibody, however, previous reported anti-VISTA antibodies use IgG1 Fc isotypes that deplete VISTA+ cells by antibody dependent cellular cytotoxicity/complement dependent cytotoxicity and these antibodies have shown fast serum clearance and immune toxicities. METHOD: Here we used a rational antibody discovery approach to develop the first Fc-independent anti-VISTA antibody, HMBD-002, that binds a computationally predicted functional epitope within the C-C-loop, distinct from other known anti-VISTA antibodies. This epitope is species-conserved allowing robust in vitro and in vivo testing of HMBD-002 in human and murine models of immune activation and cancer including humanized mouse models. RESULTS: We demonstrate here that blockade by HMBD-002 inhibits VISTA binding to potential partners, including V-Set and Immunoglobulin domain containing 3, to reduce myeloid-derived suppression of T cell activity and prevent neutrophil migration. Analysis of immune cell milieu suggests that HMBD-002 treatment stimulates a proinflammatory phenotype characterized by a Th1/Th17 response, recapitulating a phenotype previously noted in VISTA knockout models. This mechanism of action is further supported by immune-competent syngenic and humanized mouse models of colorectal, breast and lung cancer where neutralizing VISTA, without depleting VISTA expressing cells, significantly inhibited tumor growth while decreasing infiltration of suppressive myeloid cells and increasing T cell activity. Finally, we did not observe either the fast serum clearance or immune toxicities that have been reported for IgG1 antibodies. CONCLUSION: In conclusion, we have shown that VISTA-induced immune suppression can be reversed by blockade of the functional C-C' loop region of VISTA with a first-in-class rationally targeted and non-depleting IgG4 isotype anti-VISTA antibody, HMBD-002. This antibody represents a highly promising novel therapy in the VISTA-suppressed ICT non-responder population.


Asunto(s)
Terapia de Inmunosupresión/métodos , Activación de Linfocitos/inmunología , Neoplasias/inmunología , Receptores Fc/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Microambiente Tumoral
8.
Protein Sci ; 30(12): 2433-2444, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34662450

RESUMEN

Gram-negative pathogens like Enteropathogenic Escherichia coli (EPEC) utilize the type three secretion system (T3SS) to translocate various effector proteins that are needed to "hijack" the host system for pathogenic survival. Specialized T3SS chaperones inside bacterial cells stabilize these effector proteins and facilitate their translocation. CesT is a unique multi-cargo chaperone that interacts with and translocates ~10 different effector proteins. Here, we report the specific interaction between CesT and its key effector, NleH2, and explore the potential role of NleH2 as a kinase for CesT phosphorylation. First, we identified the chaperone-binding domain (CBD; 19-97aa) of NleH2, and mapped the specific interaction sites for both CesT and NleH2. The N- and C-terminal residues of the CBD interact with the dimeric interface of CesT. Further, we compared the CesT binding to NleH2, to that of another key effector Tir and with the global carbon regulator CsrA. Notably, the effectors have the binding regions at the ß-sheet core and dimer interface of CesT, whereas the CsrA regulator interacts predominantly through the C-terminal region, which is found ~17 Å away from the effectors-binding sites. Next, we showed that NleH2 remains an active kinase even as a complex with CesT and is responsible for its autophosphorylation as well as phosphorylation of CesT at Tyr153. Collectively, our findings enhance the understanding of the role of multi-cargo chaperone CesT in orchestrating effector translocation through T3SS.


Asunto(s)
Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/química , Chaperonas Moleculares/química , Proteínas de Unión al ARN/química , Receptores de Superficie Celular/química , Proteínas Represoras/química , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Escherichia coli Enteropatógena/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
9.
Elife ; 102021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33554856

RESUMEN

The spike (S) protein is the main handle for SARS-CoV-2 to enter host cells via surface angiotensin-converting enzyme 2 (ACE2) receptors. How ACE2 binding activates proteolysis of S protein is unknown. Here, using amide hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations, we have mapped the S:ACE2 interaction interface and uncovered long-range allosteric propagation of ACE2 binding to sites necessary for host-mediated proteolysis of S protein, critical for viral host entry. Unexpectedly, ACE2 binding enhances dynamics at a distal S1/S2 cleavage site and flanking protease docking site ~27 Å away while dampening dynamics of the stalk hinge (central helix and heptad repeat [HR]) regions ~130 Å away. This highlights that the stalk and proteolysis sites of the S protein are dynamic hotspots in the prefusion state. Our findings provide a dynamics map of the S:ACE2 interface in solution and also offer mechanistic insights into how ACE2 binding is allosterically coupled to distal proteolytic processing sites and viral-host membrane fusion. Thus, protease docking sites flanking the S1/S2 cleavage site represent alternate allosteric hotspot targets for potential therapeutic development.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sitio Alostérico , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Sitios de Unión , COVID-19/metabolismo , Humanos , Espectrometría de Masas/métodos , Simulación de Dinámica Molecular , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteolisis , Receptores Virales/química , Receptores Virales/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Internalización del Virus
10.
Mol Biosyst ; 9(11): 2932-41, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24056978

RESUMEN

Diabetes mellitus is a multifactorial disease and its incidence is increasing worldwide. Among the two types of diabetes, type-2 accounts for about 90% of all diabetic cases, whereas type-1 or juvenile diabetes is less prevalent and presents with humoral immune responses against some of the autoantigens. We attempted to test whether the sera of type-1 diabetes patients cross-react with mycobacterial heat shock protein 65 (Hsp65) due to postulated epitope homologies between mycobacterial Hsp65 and an important autoantigen of type-1 diabetes, glutamic acid decarboxylase-65 (GAD65). In our study, we used either recombinant mycobacterial Hsp65 protein or synthetic peptides corresponding to some of the potential epitopes of mycobacterial Hsp65 that are shared with GAD65 or human Hsp60, and a control peptide sourced from mycobacterial Hsp65 which is not shared with GAD65, Hsp60 and other autoantigens of type-1 diabetes. The indirect ELISA results indicated that both type-1 diabetes and type-2 diabetes sera cross-react with conserved mycobacterial Hsp65 peptides and recombinant mycobacterial Hsp65 protein but do not do so with the control peptide. Our results suggest that cross-reactivity of mycobacterial Hsp65 with autoantibodies of diabetes sera could be due to the presence of significantly conserved peptides between mycobacterial Hsp65 and human Hsp60 rather than between mycobacterial Hsp65 and GAD65. The treatment of human peripheral blood mononuclear cells (PBMCs) with recombinant mycobacterial Hsp65 protein or the synthetic peptides resulted in a significant increase in the secretion of cytokines such as IL-1ß, IL-8, IL-6, TNF-α and IL-10. Taken together, these findings point towards a dual role for mycobacterial Hsp65: in inducing autoimmunity and in inflammation, the two cardinal features of diabetes mellitus.


Asunto(s)
Autoantígenos/inmunología , Proteínas Bacterianas/inmunología , Chaperonina 60/inmunología , Citocinas/metabolismo , Diabetes Mellitus/inmunología , Diabetes Mellitus/metabolismo , Secuencia de Aminoácidos , Autoantígenos/sangre , Proteínas Bacterianas/química , Chaperonina 60/química , Reacciones Cruzadas/inmunología , Citocinas/inmunología , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Epítopos/química , Epítopos/inmunología , Femenino , Humanos , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , Modelos Inmunológicos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Péptidos/inmunología , Conformación Proteica , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA