Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 19(49): e2305048, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37594732

RESUMEN

The structural coexistence of dual rigid and mobile sublattices in superionic Argyrodites yields ultralow lattice thermal conductivity along with decent electrical and ionic conductivities and therefore attracts intense interest for batteries, fuel cells, and thermoelectric applications. However, a comprehensive understanding of their underlying lattice and diffusive dynamics in terms of the interplay between phonons and mobile ions is missing. Herein, inelastic neutron scattering is employed to unravel that phonon softening on heating to Tc ≈ 350 K triggers fast Ag diffusion in the canonical superionic Argyrodite Ag8 GeSe6 . Ab initio molecular dynamics simulations reproduce the experimental neutron scattering signals and identify the partially ultrafast Ag diffusion with a large diffusion coefficient of 10-4 cm-2 s-1 . The study illustrates the microscopic interconnection between soft phonons and mobile ions and provides a paradigm for an intertwined interaction of the lattice and diffusive dynamics in superionic materials.

2.
Adv Sci (Weinh) ; 11(22): e2400258, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38526197

RESUMEN

Due to their amorphous-like ultralow lattice thermal conductivity both below and above the superionic phase transition, crystalline Cu- and Ag-based superionic argyrodites have garnered widespread attention as promising thermoelectric materials. However, despite their intriguing properties, quantifying their lattice thermal conductivities and a comprehensive understanding of the microscopic dynamics that drive these extraordinary properties are still lacking. Here, an integrated experimental and theoretical approach is adopted to reveal the presence of Cu-dominated low-energy optical phonons in the Cu-based argyrodite Cu7PS6. These phonons yield strong acoustic-optical phonon scattering through avoided crossing, enabling ultralow lattice thermal conductivity. The Unified Theory of thermal transport is employed to analyze heat conduction and successfully reproduce the experimental amorphous-like ultralow lattice thermal conductivities, ranging from 0.43 to 0.58 W m-1 K-1, in the temperature range of 100-400 K. The study reveals that the amorphous-like ultralow thermal conductivity of Cu7PS6 stems from a significantly dominant wave-like conduction mechanism. Moreover, the simulations elucidate the wave-like thermal transport mainly results from the contribution of Cu-associated low-energy overlapping optical phonons. This study highlights the crucial role of low-energy and overlapping optical modes in facilitating amorphous-like ultralow thermal transport, providing a thorough understanding of the underlying complex dynamics of argyrodites.

3.
ACS Appl Mater Interfaces ; 11(2): 2168-2176, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30575380

RESUMEN

Argyrodites with a general chemical formula of A8BX6 (A = Cu, Ag; B = Si, Ge, Sn; and X = S, Se, and Te) are known for the intimate interplay among mobile ions, electrons, and phonons, which yields rich material physics and materials chemistry phenomena. In particular, the coexistence of fast ionic conduction and promising thermoelectric performance in Ag8GeTe6, Ag8SnSe6, Ag8SiTe6, Ag8SiSe6, and Cu8GeSe6 at high temperatures ushered us to their chemical neighbor Ag8GeSe6, whose high-temperature crystal structure and thermoelectric properties are not yet reported. In this work, we have employed a growth-from-the-melt technique followed by hot pressing to prepare polycrystalline Ag8GeSe6 samples, on which the crystal structure, micro-morphology, compositional analysis, UV-vis absorption, specific heat, speed of sound, and thermoelectric properties were characterized as a function of the Se-deficiency ratio and temperature. We found that (i) the crystal structure of Ag8GeSe6 evolved from orthorhombic at room temperature to face center cubic above 410 K, with a region of phase separations in between; (ii) like other argyrodite 816 phases, Ag8GeSe6 exhibited ultralow thermal conductivities over a wide temperature range as the phonon mean free path was down to the order of interatomic spacing; and (iii) varying Se deficiency effectively optimized the carrier concentration and power factor, a figure of merit zT value ∼0.55 was achieved at 923 K in Ag8GeSe5.88. These results not only fill a knowledge gap of Ag8GeSe6 but also contribute to a comprehensive understanding of 816 phase argyrodites at large.

4.
ACS Omega ; 4(3): 5442-5450, 2019 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459709

RESUMEN

Single-crystalline SnSe has attracted much attention because of its record high figure-of-merit ZT ≈ 2.6; however, this high ZT has been associated with the low mass density of samples which leaves the intrinsic ZT of fully dense pristine SnSe in question. To this end, we prepared high-quality fully dense SnSe single crystals and performed detailed structural, electrical, and thermal transport measurements over a wide temperature range along the major crystallographic directions. Our single crystals were fully dense and of high purity as confirmed via high statistics 119Sn Mössbauer spectroscopy that revealed <0.35 at. % Sn(IV) in pristine SnSe. The temperature-dependent heat capacity (C p) provided evidence for the displacive second-order phase transition from Pnma to Cmcm phase at T c ≈ 800 K and a small but finite Sommerfeld coefficient γ0 which implied the presence of a finite Fermi surface. Interestingly, despite its strongly temperature-dependent band gap inferred from density functional theory calculations, SnSe behaves like a low-carrier-concentration multiband metal below 600 K, above which it exhibits a semiconducting behavior. Notably, our high-quality single-crystalline SnSe exhibits a thermoelectric figure-of-merit ZT ∼1.0, ∼0.8, and ∼0.25 at 850 K along the b, c, and a directions, respectively.

5.
Sci Rep ; 8(1): 16740, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30425267

RESUMEN

Coumarin-6 polycrystalline films were fabricated from vacuum deposition at various substrate temperatures Tsub from 106 to 178 °C with a fixed source temperature of 185 °C. Because of its slenderer and more asymmetric structure, the adhered coumarin-6 molecule on top of the growing interface encounters a larger steric energetic barrier of 0.92 eV as estimated from the Arrhenius plot of growth rate versus 1/Tsub. From top-view SEM pictures, the as-deposited coumarin-6 thin films exhibit a twisted pattern and a kinematic roughness for Tsub < 150 °C; while clear facets emerge for Tsub ≥ 150 °C due to the increase of surface diffusion energy of the adhered molecules. From XRD analysis, besides the confirmation of the triclinic structure two anomalous peaks observed at 2θ ~ 9.007° and 7.260° are explained due to the co-existence of N- and S-coumarin-6-isomers within the crystalline grains. Furthermore, for coumarin-6 polycrystalline films deposited at Tsub = 150 °C with high crystallinity of the constituent grains, the bandgap determined from optical transmission is around 2.392 eV; and from photoluminescence spectra, the fitted four emission components are assigned to the Frenkel and charge transfer excitons recombination with participation of molecular vibrational states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA