RESUMEN
Intestinal epithelial expression of the tight junction protein claudin-2, which forms paracellular cation and water channels, is precisely regulated during development and in disease. Here, we show that small intestinal epithelial claudin-2 expression is selectively upregulated in septic patients. Similar changes occurred in septic mice, where claudin-2 upregulation coincided with increased flux across the paracellular pore pathway. In order to define the significance of these changes, sepsis was induced in claudin-2 knockout (KO) and wild-type (WT) mice. Sepsis-induced increases in pore pathway permeability were prevented by claudin-2 KO. Moreover, claudin-2 deletion reduced interleukin-17 production and T cell activation and limited intestinal damage. These effects were associated with reduced numbers of neutrophils, macrophages, dendritic cells, and bacteria within the peritoneal fluid of septic claudin-2 KO mice. Most strikingly, claudin-2 deletion dramatically enhanced survival in sepsis. Finally, the microbial changes induced by sepsis were less pathogenic in claudin-2 KO mice as survival of healthy WT mice injected with cecal slurry collected from WT mice 24 h after sepsis was far worse than that of healthy WT mice injected with cecal slurry collected from claudin-2 KO mice 24 h after sepsis. Claudin-2 upregulation and increased pore pathway permeability are, therefore, key intermediates that contribute to development of dysbiosis, intestinal damage, inflammation, ineffective pathogen control, and increased mortality in sepsis. The striking impact of claudin-2 deletion on progression of the lethal cascade activated during sepsis suggests that claudin-2 may be an attractive therapeutic target in septic patients.
Asunto(s)
Claudina-2 , Sepsis , Animales , Humanos , Ratones , Claudina-2/genética , Claudina-2/metabolismo , Disbiosis/genética , Disbiosis/metabolismo , Funcion de la Barrera Intestinal , Mucosa Intestinal/metabolismo , Permeabilidad , Sepsis/metabolismo , Uniones Estrechas/metabolismo , Regulación hacia ArribaRESUMEN
Tight junctions (TJs) are specialized regions of contact between cells of epithelial and endothelial tissues that form selective semipermeable paracellular barriers that establish and maintain body compartments with different fluid compositions. As such, the formation of TJs represents a critical step in metazoan evolution, allowing the formation of multicompartmental organisms and true, barrier-forming epithelia and endothelia. In the six decades that have passed since the first observations of TJs by transmission electron microscopy, much progress has been made in understanding the structure, function, molecular composition and regulation of TJs. The goal of this Perspective is to highlight the key concepts that have emerged through this research and the future challenges that lie ahead for the field.
Asunto(s)
Uniones Estrechas , Uniones Estrechas/metabolismo , Uniones Estrechas/ultraestructura , Humanos , Animales , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Células Epiteliales/citologíaRESUMEN
Intestinal epithelia express two long myosin light-chain kinase (MLCK) splice variants, MLCK1 and MLCK2, which differ by the absence of a complete immunoglobulin (Ig)-like domain 3 within MLCK2. MLCK1 is preferentially associated with the perijunctional actomyosin ring at steady state, and this localization is enhanced by inflammatory stimuli including tumor necrosis factor (TNF). Here, we sought to identify MLCK1 domains that direct perijunctional MLCK1 localization and their relevance to disease. Ileal biopsies from Crohn's disease patients demonstrated preferential increases in MLCK1 expression and perijunctional localization relative to healthy controls. In contrast to MLCK1, MLCK2 expressed in intestinal epithelia is predominantly associated with basal stress fibers, and the two isoforms have distinct effects on epithelial migration and barrier regulation. MLCK1(Ig1-4) and MLCK1(Ig1-3), but not MLCK2(Ig1-4) or MLCK1(Ig3), directly bind to F-actin in vitro and direct perijunctional recruitment in intestinal epithelial cells. Further study showed that Ig1 is unnecessary, but that, like Ig3, the unstructured linker between Ig1 and Ig2 (Ig1/2us) is essential for recruitment. Despite being unable to bind F-actin or direct recruitment independently, Ig3 does have dominant negative functions that allow it to displace perijunctional MLCK1, increase steady-state barrier function, prevent TNF-induced MLCK1 recruitment, and attenuate TNF-induced barrier loss. These data define the minimal domain required for MLCK1 localization and provide mechanistic insight into the MLCK1 recruitment process. Overall, the results create a foundation for development of molecularly targeted therapies that target key domains to prevent MLCK1 recruitment, restore barrier function, and limit inflammatory bowel disease progression.
Asunto(s)
Actinas , Actomiosina , Humanos , Actinas/metabolismo , Actomiosina/metabolismo , Citocinesis , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Miosinas/metabolismo , Uniones Estrechas/metabolismo , Células CACO-2 , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Occludin is a tetramembrane-spanning tight junction protein. The long C-terminal cytoplasmic domain, which represents nearly half of occludin sequence, includes a distal bundle of three α-helices that mediates interactions with other tight junction components. A short unstructured region just proximal to the α-helical bundle is a phosphorylation hotspot within which S408 phosphorylation acts as molecular switch that modifies tight junction protein interactions and barrier function. Here, we used NMR to define the effects of S408 phosphorylation on intramolecular interactions between the unstructured region and the α-helical bundle. S408 pseudophosphorylation affected conformation at hinge sites between the three α-helices. Further studies using paramagnetic relaxation enhancement and microscale thermophoresis indicated that the unstructured region interacts with the α-helical bundle. These interactions between the unstructured domain are enhanced by S408 phosphorylation and allow the unstructured region to obstruct the binding site, thereby reducing affinity of the occludin tail for zonula occludens-1 (ZO-1). Conversely, S408 dephosphorylation attenuates intramolecular interactions, exposes the binding site, and increases the affinity of occludin binding to ZO-1. Consistent with an increase in binding to ZO-1, intravital imaging and fluorescence recovery after photobleaching (FRAP) analyses of transgenic mice demonstrated increased tight junction anchoring of enhanced green fluorescent protein (EGFP)-tagged nonphosphorylatable occludin relative to wild-type EGFP-occludin. Overall, these data define the mechanisms by which S408 phosphorylation modifies occludin tail conformation to regulate tight junction protein interactions and paracellular permeability.
Asunto(s)
Fosfoproteínas , Serina , Animales , Ratones , Ocludina/genética , Ocludina/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Conformación Proteica en Hélice alfa , Serina/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismoRESUMEN
OBJECTIVE: Intestinal barrier loss is a Crohn's disease (CD) risk factor. This may be related to increased expression and enzymatic activation of myosin light chain kinase 1 (MLCK1), which increases intestinal paracellular permeability and correlates with CD severity. Moreover, preclinical studies have shown that MLCK1 recruitment to cell junctions is required for tumour necrosis factor (TNF)-induced barrier loss as well as experimental inflammatory bowel disease progression. We sought to define mechanisms of MLCK1 recruitment and to target this process pharmacologically. DESIGN: Protein interactions between FK506 binding protein 8 (FKBP8) and MLCK1 were assessed in vitro. Transgenic and knockout intestinal epithelial cell lines, human intestinal organoids, and mice were used as preclinical models. Discoveries were validated in biopsies from patients with CD and control subjects. RESULTS: MLCK1 interacted specifically with the tacrolimus-binding FKBP8 PPI domain. Knockout or dominant negative FKBP8 expression prevented TNF-induced MLCK1 recruitment and barrier loss in vitro. MLCK1-FKBP8 binding was blocked by tacrolimus, which reversed TNF-induced MLCK1-FKBP8 interactions, MLCK1 recruitment and barrier loss in vitro and in vivo. Biopsies of patient with CD demonstrated increased numbers of MLCK1-FKBP8 interactions at intercellular junctions relative to control subjects. CONCLUSION: Binding to FKBP8, which can be blocked by tacrolimus, is required for MLCK1 recruitment to intercellular junctions and downstream events leading to immune-mediated barrier loss. The observed increases in MLCK1 activity, MLCK1 localisation at cell junctions and perijunctional MLCK1-FKBP8 interactions in CD suggest that targeting this process may be therapeutic in human disease. These new insights into mechanisms of disease-associated barrier loss provide a critical foundation for therapeutic exploitation of FKBP8-MLCK1 interactions.
Asunto(s)
Enfermedad de Crohn , Animales , Humanos , Ratones , Células CACO-2 , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/metabolismo , Mucosa Intestinal/metabolismo , Ratones Noqueados , Quinasa de Cadena Ligera de Miosina/metabolismo , Tacrolimus/farmacología , Proteínas de Unión a Tacrolimus/metabolismo , Uniones Estrechas/fisiología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Zonula occludens-1 (ZO-1), the major scaffolding protein of tight junctions (TJs), recruits the cytoskeleton-associated proteins cingulin (CGN) and paracingulin (CGNL1) to TJs by binding to their N-terminal ZO-1 interaction motif. The conformation of ZO-1 can be either folded or extended, depending on cytoskeletal tension and intramolecular and intermolecular interactions, and only ZO-1 in the extended conformation recruits the transcription factor DbpA to TJs. However, the sequences of ZO-1 that interact with CGN and CGNL1 and the role of TJ proteins in ZO-1 TJ assembly are not known. Here, we used glutathione-S-transferase pulldowns and immunofluorescence microscopy to show that CGN and CGNL1 bind to the C-terminal ZU5 domain of ZO-1 and that this domain is required for CGN and CGNL1 recruitment to TJs and to phase-separated ZO-1 condensates in cells. We show that KO of CGN, but not CGNL1, results in decreased accumulation of ZO-1 at TJs. Furthermore, ZO-1 lacking the ZU5 domain showed decreased accumulation at TJs, was detectable along lateral contacts, had a higher mobile fraction than full-length ZO-1 by fluorescence recovery after photobleaching analysis, and had a folded conformation, as determined by structured illumination microscopy of its N-terminal and C-terminal ends. The CGN-ZU5 interaction promotes the extended conformation of ZO-1, since binding of the CGN-ZO-1 interaction motif region to ZO-1 resulted in its interaction with DbpA in cells and in vitro. Together, these results show that binding of CGN to the ZU5 domain of ZO-1 promotes ZO-1 stabilization and accumulation at TJs by promoting its extended conformation.
Asunto(s)
Proteínas del Citoesqueleto , Uniones Estrechas , Proteína de la Zonula Occludens-1 , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Técnicas de Silenciamiento del Gen , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Dominios Proteicos , Pliegue de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/química , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismoRESUMEN
Environmental enteric dysfunction (EED) is characterized by malabsorption and diarrhea that result in irreversible deficits in physical and intellectual growth. We sought to define the expression of transport and tight junction proteins by quantitative analysis of duodenal biopsies from patients with EED. Biopsies from Pakistani children with confirmed EED diagnoses were compared to those from age-matched North American healthy controls, patients with celiac disease, and patients with nonceliac disease with villous atrophy or intraepithelial lymphocytosis. Expression of brush border digestive and transport proteins and paracellular (tight junction) proteins was assessed by quantitative multiplex immunofluorescence microscopy. EED was characterized by partial villous atrophy and marked intraepithelial lymphocytosis. Epithelial proliferation and enteroendocrine, tuft, and Paneth cell numbers were unchanged, but there was significant goblet cell expansion in EED biopsies. Expression of proteins involved in nutrient and water absorption and that of the basolateral Cl- transport protein NKCC1 were also increased in EED. Finally, the barrier-forming tight junction protein claudin-4 (CLDN4) was significantly upregulated in EED, particularly within villous enterocytes. In contrast, expression of CFTR, CLDN2, CLDN15, JAM-A, occludin, ZO-1, and E-cadherin was unchanged. Upregulation of a barrier-forming tight junction protein and brush border and basolateral membrane proteins that support nutrient and water transport in EED is paradoxical, as their increased expression would be expected to be correlated with increased intestinal barrier function and enhanced absorption, respectively. These data suggest that EED activates adaptive intestinal epithelial responses to enhance nutrient absorption but that these changes are insufficient to restore health.
Asunto(s)
Mucosa Intestinal , Linfocitosis , Niño , Humanos , Mucosa Intestinal/metabolismo , Linfocitosis/metabolismo , Linfocitosis/patología , Uniones Estrechas/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Atrofia/metabolismo , Atrofia/patologíaRESUMEN
Inflammatory bowel disease is characterized by defects in epithelial function and dysregulated inflammatory signaling by lamina propria mononuclear cells including macrophages and dendritic cells in response to microbiota. In this review, we focus on the role of pattern recognition receptors in the inflammatory response as well as epithelial barrier regulation. We explore cytokine networks that increase inflammation, regulate paracellular permeability, cause epithelial damage, up-regulate epithelial proliferation, and trigger restitutive processes. We focus on studies using patient samples as well as speculate on pathways that can be targeted to more holistically treat patients with inflammatory bowel disease.
Asunto(s)
Enfermedades Inflamatorias del Intestino , Uniones Estrechas , Células CACO-2 , Citocinas/metabolismo , Células Epiteliales/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Quinasa de Cadena Ligera de Miosina/metabolismo , Permeabilidad , Uniones Estrechas/metabolismoRESUMEN
BACKGROUNDS & AIMS: Increased permeability is implicated in the pathogenesis of intestinal disease. In vitro and in vivo studies have linked down-regulation of the scaffolding protein ZO-1, encoded by the TJP1 gene, to increased tight junction permeability. This has not, however, been tested in vivo. Here, we assessed the contributions of ZO-1 to in vivo epithelial barrier function and mucosal homeostasis. METHODS: Public Gene Expression Omnibus data sets and biopsy specimens from patients with inflammatory bowel disease (IBD) and healthy control individuals were analyzed. Tjp1f/f;vil-CreTg mice with intestinal epithelial-specific ZO-1 knockout (ZO-1KO.IEC) mice and Tjp1f/f mice littermates without Cre expression were studied using chemical and immune-mediated models of disease as well as colonic stem cell cultures. RESULTS: ZO-1 transcript and protein expression were reduced in biopsy specimens from patients with IBD. Despite mildly increased intestinal permeability, ZO-1KO.IEC mice were healthy and did not develop spontaneous disease. ZO-1KO.IEC mice were, however, hypersensitive to mucosal insults and displayed defective repair. Furthermore, ZO-1-deficient colonic epithelia failed to up-regulate proliferation in response to damage in vivo or Wnt signaling in vitro. ZO-1 was associated with centrioles in interphase cells and mitotic spindle poles during division. In the absence of ZO-1, mitotic spindles failed to correctly orient, resulting in mitotic catastrophe and abortive proliferation. ZO-1 is, therefore, critical for up-regulation of epithelial proliferation and successful completion of mitosis. CONCLUSIONS: ZO-1 makes critical, tight junction-independent contributions to Wnt signaling and mitotic spindle orientation. As a result, ZO-1 is essential for mucosal repair. We speculate that ZO-1 down-regulation may be one cause of ineffective mucosal healing in patients with IBD.
Asunto(s)
Proliferación Celular , Colon/metabolismo , Células Epiteliales/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Mitosis , Proteína de la Zonula Occludens-1/metabolismo , Animales , Células Cultivadas , Colon/patología , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Células Epiteliales/patología , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Ratones Noqueados , Permeabilidad , Huso Acromático/genética , Huso Acromático/metabolismo , Huso Acromático/patología , Vía de Señalización Wnt , Cicatrización de Heridas , Proteína de la Zonula Occludens-1/genéticaRESUMEN
Myosin light chain kinase (MLCK) regulates actinomyosin contraction. Two splice variants of long MLCK are expressed in epithelial cells and divergently regulate gut barrier functions; reduced MLCK levels in human colorectal cancers (CRC) with unclarified significance have been reported. CRC are solid tumors clonally sustained by stem cells highly expressing CD44 and CD133. The aim was to investigate the role of MLCK splice variants in CRC tumorigenesis. We found lower MLCK1/2 and higher CD44 expression in human CRC, but no change in CD133 or LGR5. Large-scale bioinformatics showed an inverse relationship between MYLK and CD44 in human sample gene datasets. A 3-fold increased tumor burden was observed in MLCK(-/-) mice compared with wild-type (WT) mice in a chemical-induced CRC model. Primary tumorspheres derived from the MLCK(-/-) mice displayed larger sizes and higher CD44 transcript levels than those from the WT mice. Bioinformatics revealed binding of TEAD4 (a transcriptional enhancer factor family member in the Hippo pathway) to CD44 promoter, which was confirmed by luciferase reporter assay. Individually expressing MLCK1 and MLCK2 variants in the MLCK-knockout (KO) Caco-2 cells inhibited the nuclear localization of TEAD4 cofactors, VGLL3 and YAP1, respectively, and both variants reduced the CD44 transcription. Accelerated cell cycle transit was observed in the MLCK-KO cells, whereby expression of MLCK1/2 variants counterbalanced the cell hyperproliferation. In conclusion, MLCK1/2 variants are novel tumor suppressors by downregulating the TEAD4/CD44 axis via reducing nuclear translocation of distinct transcriptional coactivators. The reduction of epithelial MLCKs, especially isoform 2, may drive cancer stemness and tumorigenesis.
Asunto(s)
Empalme Alternativo , Biomarcadores de Tumor/metabolismo , Neoplasias del Colon/patología , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptores de Hialuranos/metabolismo , Proteínas Musculares/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Ciclo Celular , Movimiento Celular , Proliferación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Receptores de Hialuranos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/genética , Quinasa de Cadena Ligera de Miosina/genética , Fosforilación , Pronóstico , Tasa de Supervivencia , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Células Tumorales Cultivadas , Proteínas Señalizadoras YAPRESUMEN
BACKGROUND & AIMS: Loss-of-function variants in the laccase domain containing 1 (LACC1) gene are associated with immune-mediated diseases, including inflammatory bowel disease. It is not clear how LACC1 balances defenses against intestinal bacteria vs intestinal inflammation or what cells are responsible for this balance in humans or mice. METHODS: Lacc1-/- mice and mice with myeloid-specific disruption of Lacc1 (Lacc1Δmye) were given oral Salmonella Typhimurium or dextran sodium sulfate. CD45RBhiCD4+T cells were transferred to Lacc1-/-Rag2-/- mice to induce colitis. Organs were collected and analyzed by histology and protein expression. Bone marrow-derived macrophages and dendritic cells, lamina propria macrophages, and mesenteric lymph node dendritic cells were examined. We performed assays to measure intestinal permeability, cell subsets, bacterial uptake and clearance, reactive oxygen species, nitrite production, autophagy, signaling, messenger RNA, and cytokine levels. RESULTS: Lacc1-/- mice developed more severe T-cell transfer colitis than wild-type mice and had an increased burden of bacteria in intestinal lymphoid organs, which expressed lower levels of T helper (Th) 1 and Th17 cytokines and higher levels of Th2 cytokines. Intestinal lymphoid organs from mice with deletion of LACC1 had an increased burden of bacteria after oral administration of S Typhimurium and after administration of dextran sodium sulfate compared with wild-type mice. In macrophages, expression of LACC1 was required for toll-like receptor-induced uptake of bacteria, which required PDK1, and of mitogen-activated protein kinase (MAPK)- and nuclear factor κB-dependent induction of reactive oxygen species, reactive nitrogen species, and autophagy. Expression of LACC1 by dendritic cells was required for increasing expression of Th1 and Th17 cytokines and reducing expression of Th2 cytokines upon coculture with CD4+ T cells. Mice with LACC1-deficient myeloid cells had an increased burden of bacteria and altered T-cell cytokines in intestinal lymphoid organs, similar to Lacc1-/- mice. Complementation of cytokines produced by myeloid cells to cocultures of LACC1-deficient myeloid cells and wild-type CD4+ T cells restored T-cell cytokine regulation. When S Typhimurium-infected Lacc1Δmye mice were injected with these myeloid cell-derived cytokines, intestinal tissues increased production of Th1 and Th17 cytokines, and bacteria were reduced. CONCLUSIONS: Disruption of Lacc1 in mice increases the burden of bacteria in intestinal lymphoid organs and intestinal inflammation after induction of chronic colitis. LACC1 expression by myeloid cells in mice is required to clear bacteria and to regulate adaptive T-cell responses against microbes.
Asunto(s)
Colitis Ulcerosa/inmunología , Mucosa Intestinal/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Mieloides/metabolismo , Infecciones por Salmonella/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/genética , Colitis Ulcerosa/patología , Citocinas/metabolismo , Proteínas de Unión al ADN/genética , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Femenino , Interacciones Microbiota-Huesped/inmunología , Humanos , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Ratones Noqueados , Cultivo Primario de Células , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/patología , Salmonella typhimurium/inmunologíaRESUMEN
BACKGROUND & AIMS: Histologic features of inflammation (histologic inflammation) are associated with clinical relapse in patients with ulcerative colitis (UC). Concentration of fecal calprotectin (FC) can be used to identify patients with mucosal inflammation. We aimed to assess the accuracy of FC measurements in identifying patients with histologic inflammation and to develop a model to predict outcomes of therapy. METHODS: We performed a post hoc analysis of data from a phase 4 trial of the efficacy of multimatrix mesalamine in patients with mild to moderate UC (the MOMENTUM trial). We obtained clinical, endoscopic, and histologic data from week 8 (n = 639) and week 52 (n = 373) of the trial. We used area under the receiver operating characteristic curves to determine the accuracy and optimal cut-off values of FC in identifying patients with different therapeutic outcomes (clinical remission, endoscopic healing, deep remission, or histologic remission) at week 8 and week 52. We performed multivariable logistic regression analyses to identify factors associated with these outcomes. RESULTS: Median FC concentrations were lower in patients who achieved outcomes of clinical remission, endoscopic healing, deep remission, or histologic remission vs patients who did not. FC concentrations identified patients with endoscopic healing and histologic remission with area under the receiver operating characteristic curve values of 0.77 and 0.76 at week 8, and 0.79 and 0.80 at week 52, respectively. The optimal FC cut-off concentrations for identification of patients with histologic remission were 75 µg/g at week 8 and 99 µg/g at week 52. In the subpopulation with an endoscopy score of 0, median FC concentrations were lower in patients with histologic remission than in patients with microscopic inflammation at week 8 (30 vs 140 µg/g; area under the receiver operating characteristic, 0.72) and week 52 (21.5 vs 134.5 µg/g; area under the receiver operating characteristic, 0.71). At both time points, the optimal FC cut-off concentration was approximately 75 µg/g. Our final prediction model for week 52 histologic remission comprised endoscopic score at week 8, FC concentration at week 8, and histologic activity at baseline and week 8. CONCLUSIONS: A post hoc analysis of data from a phase 4 trial found that, even in patients with complete endoscopic healing of UC, FC concentration can be used to discriminate patients with ongoing microscopic inflammation from patients with histologic remission. The optimal cut-off concentration of FC is between 75 and 100 µg/g. ClinicalTrials.gov no: NCT01124149.
Asunto(s)
Colitis Ulcerosa , Complejo de Antígeno L1 de Leucocito , Biomarcadores/análisis , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/tratamiento farmacológico , Colonoscopía , Heces/química , Humanos , Índice de Severidad de la Enfermedad , Resultado del TratamientoRESUMEN
Intestinal Na+-nutrient cotransport depends on claudin-2 and claudin-15 mediated Na+ recycling. Expression of these proteins is coordinately regulated during postnatal development. While expression of claudin-2 and claudin-15 has been studied in inflammatory bowel disease (IBD) and celiac disease (CD), it has not been assessed in other malabsorptive diseases, and no reports have compared expression in children and adults. We used quantitative immunofluorescence microscopy to assess claudin-2 and claudin-15 expression in duodenal biopsies from children and adults with malabsorptive disease and healthy controls. Consistent with previous work in rodents, claudin-2 expression in healthy children was markedly greater, and claudin-15 expression was less, than that in adults. Claudin-2 expression was increased in adults with CD and downregulated in children with graft-versus-host disease (GVHD). In contrast, claudin-15 expression was reduced in adults with GVHD and common variable immunodeficiency (CVID). These data show that one of the two Na+/water pore-forming claudins is upregulated in CD and downregulated in GVHD and CVID. The specific claudin whose expression changes, however, reflects the age of the patient (child or adult). We conclude that contributions of claudin-2 and claudin-15 to pathophysiology of and responses to diarrhea in children and adults with GVHD and CVID differ from those in CD and IBD.
Asunto(s)
Claudina-2/metabolismo , Claudinas/metabolismo , Síndromes de Malabsorción/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Preescolar , Claudina-2/análisis , Claudinas/análisis , Duodeno/química , Duodeno/patología , Femenino , Humanos , Lactante , Masculino , Persona de Mediana EdadRESUMEN
The role of the actin cytoskeleton in the sequence of physiological epithelial repair in the intact epithelium has yet to be elucidated. Here, we explore the role of actin in gastric repair in vivo and in vitro gastric organoids (gastroids). In response to two-photon-induced cellular damage of either an in vivo gastric or in vitro gastroid epithelium, actin redistribution specifically occurred in the lateral membranes of cells neighboring the damaged cell. This was followed by their migration inward to close the gap at the basal pole of the dead cell, in parallel with exfoliation of the dead cell into the lumen. The repair and focal increase of actin was significantly blocked by treatment with EDTA or the inhibition of actin polymerization. Treatment with inhibitors of myosin light chain kinase, myosin II, trefoil factor 2 signaling or phospholipase C slowed both the initial actin redistribution and the repair. While Rac1 inhibition facilitated repair, inhibition of RhoA/Rho-associated protein kinase inhibited it. Inhibitors of focal adhesion kinase and Cdc42 had negligible effects. Hence, initial actin polymerization occurs in the lateral membrane, and is primarily important to initiate dead cell exfoliation and cell migration to close the gap.
Asunto(s)
Actinas/metabolismo , Mucosa Gástrica/lesiones , Organoides/lesiones , Multimerización de Proteína/fisiología , Repitelización/fisiología , Estómago/citología , Animales , Movimiento Celular , Células Cultivadas , Células Epiteliales/fisiología , Femenino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/fisiología , Masculino , Ratones , Ratones Transgénicos , Organoides/citología , Organoides/fisiología , Polimerizacion , Regeneración/fisiología , Estómago/lesionesRESUMEN
BACKGROUND & AIMS: Deep remission, based on clinical remission and evidence of healing during endoscopic evaluation, are goals of medical treatments for Crohn's disease (CD). We investigated whether histologic healing is associated with outcomes of patients with CD ileitis. METHODS: We performed a retrospective study of 101 patients with CD (52% male) isolated to the terminal ileum who had a colonoscopy between September 2005 and June 2015. Our analysis included patients in clinical remission at colonoscopy who had biopsies collected from colon and ileum. The ileum was evaluated for endoscopic healing (no ulceration) and histologic evidence of healing (no active inflammation, erosions, ulceration, or neutrophil infiltration). We compared times of clinical relapse-free survival, medication escalation, corticosteroid use, or hospitalization secondary to disease activity between patients with and without histological and endoscopic healing, followed for a median 21 months. We identified factors associated with survival using Kaplan Meier analysis and Cox proportional hazard model. RESULTS: At ileo-colonoscopy, 63% of patients had endoscopic healing and 55% had histologic evidence of healing. The level of agreement between endoscopic and histologic activity was fair (62%, K = 0.2250, P = .0064). Forty-two patients had clinical relapse, 45 had medication escalation, 30 required corticosteroids, and 17 were hospitalized (3 required surgery). On multivariate analysis, only histologic healing was associated with decreased risk of clinical relapse (hazard ratio [HR], 2.05; 95% CI, 1.07-3.94; P = .031), medication escalation (HR, 2.17; 95% CI, 1.2-3.96; P = .011), and corticosteroid use (HR, 2.44; 95% CI, 1.17-5.09; P = .018). No factors were associated with hospitalization. CONCLUSIONS: In patients with ileal CD in clinical remission, histologic healing but not endoscopic healing is associated with decreased risk of clinical relapse, medication escalation, or corticosteroid use.
Asunto(s)
Enfermedad de Crohn , Colonoscopía , Enfermedad de Crohn/tratamiento farmacológico , Femenino , Humanos , Íleon , Mucosa Intestinal , Masculino , Recurrencia Local de Neoplasia , Inducción de Remisión , Estudios RetrospectivosRESUMEN
BACKGROUND & AIMS: Epithelial tight junctions are compromised in gastrointestinal disease. Processes that contribute to the resulting barrier loss include endocytic occludin removal from the tight junction and reduced occludin expression. Nevertheless, the relatively-normal basal phenotype of occludin knockout (KO) mice has been taken as evidence that occludin does not contribute to gastrointestinal barrier function. We asked whether stress could unmask occludin functions within intestinal epithelia. METHODS: Wildtype (WT), universal and intestinal epithelial-specific occludin KO, and villin-EGFP-occludin transgenic mice as well as WT and occludin knockdown (KD) Caco-2BBe cell monolayers were challenged with DSS, TNBS, staurosporine, 5-FU, or TNF. Occludin and caspase-3 expression were assessed in patient biopsies. RESULTS: Intestinal epithelial occludin loss limited severity of DSS- and TNBS-induced colitis due to epithelial resistance to apoptosis; activation of both intrinsic and extrinsic apoptotic pathways was blocked in occludin KO epithelia. Promoter analysis revealed that occludin enhances CASP3 transcription and, conversely, that occludin downregulation reduces caspase-3 expression. Analysis of biopsies from Crohn's disease and ulcerative colitis patients and normal controls demonstrated that disease-associated occludin downregulation was accompanied by and correlated with reduced caspase-3 expression. In vitro, cytokine-induced occludin downregulation resulted in reduced caspase-3 expression and resistance to intrinsic and extrinsic pathway apoptosis, demonstrating an overall protective effect of inflammation-induced occludin loss. CONCLUSIONS: The tight junction protein occludin regulates apoptosis by enhancing caspase-3 transcription. These data suggest that reduced epithelial caspase-3 expression downstream of occludin downregulation is a previously-unappreciated anti-apoptotic process that contributes to mucosal homeostasis in inflammatory conditions.
Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Colitis/enzimología , Colon/enzimología , Células Epiteliales/enzimología , Mucosa Intestinal/enzimología , Ocludina/metabolismo , Animales , Células CACO-2 , Estudios de Casos y Controles , Caspasa 3/deficiencia , Caspasa 3/genética , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Colitis Ulcerosa/enzimología , Colitis Ulcerosa/patología , Colon/patología , Enfermedad de Crohn/enzimología , Enfermedad de Crohn/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Células Epiteliales/patología , Humanos , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Ocludina/deficiencia , Ocludina/genética , Transducción de Señal , Ácido Trinitrobencenosulfónico , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismoRESUMEN
Interstitial cells of Cajal, which express the calcium-activated chloride channel transmembrane member 16A (TMEM16A), are an important determinant of gastrointestinal (GI) motility. We previously identified the acylaminocycloalkylthiophene class of TMEM16A inhibitors, which, following medicinal chemistry, gave analog 2-bromodifluoroacetylamino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxylic acid o-tolylamide (TMinh-23) with 30 nM half-maximal inhibitory concentration. Here, we tested the efficacy of TMinh-23 for inhibition of GI motility in mice. In isolated murine gastric antrum, TMinh-23 strongly inhibited spontaneous and carbachol-stimulated rhythmic contractions. Pharmacokinetic analysis showed predicted therapeutic concentrations of TMinh-23 for at least 4 h following a single oral or intraperitoneal dose at 10 mg/kg. Gastric emptying, as assessed following an oral bolus of phenol red or independently by [99mTc]-diethylenetriamine pentaacetic acid scintigraphy, was reduced by TMinh-23 by â¼60% at 20 min. Interestingly, there was little effect of TMinh-23 on baseline whole-gut transit time or time to diarrhea induced by castor oil. Consequent to the delay in gastric emptying, TMinh-23 administration significantly reduced the elevation in blood sugar in mice following an oral but not intraperitoneal glucose load. These results provide pharmacological evidence for involvement of TMEM16A in gastric emptying and suggest the utility of TMEM16A inhibition in disorders of accelerated gastric emptying, such as dumping syndrome, and potentially for improving glucose tolerance in diabetes mellitus/metabolic syndrome and enhancing satiety in obesity.-Cil, O., Anderson, M. O., Yen, R., Kelleher, B., Huynh, T. L., Seo, Y., Nilsen, S. P., Turner, J. R., Verkman, A. S. Slowed gastric emptying and improved oral glucose tolerance produced by a nanomolar-potency inhibitor of calcium-activated chloride channel TMEM16A.
Asunto(s)
Anoctamina-1/metabolismo , Calcio/metabolismo , Agonistas de los Canales de Cloruro/farmacología , Canales de Cloruro/metabolismo , Vaciamiento Gástrico/efectos de los fármacos , Glucosa/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Glucemia/efectos de los fármacos , Cloruros/metabolismo , Femenino , Motilidad Gastrointestinal/efectos de los fármacos , Prueba de Tolerancia a la Glucosa/métodos , Humanos , RatonesRESUMEN
Intraepithelial lymphocytes (IELs) expressing the γδ TCR (γδ IELs) provide continuous surveillance of the intestinal epithelium. However, the mechanisms regulating the basal motility of these cells within the epithelial compartment have not been well defined. We investigated whether IL-15 contributes to γδ IEL localization and migratory behavior in addition to its role in IEL differentiation and survival. Using advanced live cell imaging techniques in mice, we find that compartmentalized overexpression of IL-15 in the lamina propria shifts the distribution of γδ T cells from the epithelial compartment to the lamina propria. This mislocalization could be rescued by epithelial IL-15 overexpression, indicating that epithelial IL-15 is essential for γδ IEL migration into the epithelium. Furthermore, in vitro analyses demonstrated that exogenous IL-15 stimulates γδ IEL migration into cultured epithelial monolayers, and inhibition of IL-2Rß significantly attenuates the basal motility of these cells. Intravital microscopy showed that impaired IL-2Rß signaling induced γδ IEL idling within the lateral intercellular space, which resulted in increased early pathogen invasion. Similarly, the redistribution of γδ T cells to the lamina propria due to local IL-15 overproduction also enhanced bacterial translocation. These findings thus reveal a novel role for IL-15 in mediating γδ T cell localization within the intestinal mucosa and regulating γδ IEL motility and patrolling behavior as a critical component of host defense.
Asunto(s)
Interleucina-15/metabolismo , Mucosa Intestinal/inmunología , Linfocitos Intraepiteliales/fisiología , Linfocitos T/inmunología , Animales , Diferenciación Celular , Movimiento Celular , Supervivencia Celular , Células Cultivadas , Humanos , Vigilancia Inmunológica , Inmunomodulación , Interleucina-15/genética , Subunidad beta del Receptor de Interleucina-2/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Transducción de SeñalRESUMEN
Intestinal barrier function is required for the maintenance of mucosal homeostasis. Barrier dysfunction is thought to promote progression of both intestinal and systemic diseases. In many cases, this barrier loss reflects increased permeability of the paracellular tight junction as a consequence of myosin light chain kinase (MLCK) activation and myosin II regulatory light chain (MLC) phosphorylation. Although some details about MLCK activation remain to be defined, it is clear that this triggers perijunctional actomyosin ring (PAMR) contraction that leads to molecular reorganization of tight junction structure and composition, including occludin endocytosis. In disease states, this process can be triggered by pro-inflammatory cytokines including tumor necrosis factor-α (TNF), interleukin-1ß (IL-1ß), and several related molecules. Of these, TNF has been studied in the greatest detail and is known to activate long MLCK transcription, expression, enzymatic activity, and recruitment to the PAMR. Unfortunately, toxicities associated with inhibition of MLCK expression or enzymatic activity make these unsuitable as therapeutic targets. Recent work has, however, identified a small molecule that prevents MLCK1 recruitment to the PAMR without inhibiting enzymatic function. This small molecule, termed Divertin, restores barrier function after TNF-induced barrier loss and prevents disease progression in experimental chronic inflammatory bowel disease.
Asunto(s)
Permeabilidad de la Membrana Celular , Células Epiteliales/metabolismo , Homeostasis , Mucosa Intestinal/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Animales , Humanos , Transducción de SeñalRESUMEN
Polarized epithelia assemble into sheets that compartmentalize organs and generate tissue barriers by integrating apical surfaces into a single, unified structure. This tissue organization is shared across organs, species, and developmental stages. The processes that regulate development and maintenance of apical epithelial surfaces are, however, undefined. Here, using an intestinal epithelial-specific knockout (KO) mouse and cultured epithelial cells, we show that the tight junction scaffolding protein zonula occludens-1 (ZO-1) is essential for development of unified apical surfaces in vivo and in vitro We found that U5 and GuK domains of ZO-1 are necessary for proper apical surface assembly, including organization of microvilli and cortical F-actin; however, direct interactions with F-actin through the ZO-1 actin-binding region (ABR) are not required. ZO-1 lacking the PDZ1 domain, which binds claudins, rescued apical structure in ZO-1-deficient epithelia, but not in cells lacking both ZO-1 and ZO-2, suggesting that heterodimerization with ZO-2 restores PDZ1-dependent ZO-1 interactions that are vital to apical surface organization. Pharmacologic F-actin disruption, myosin II motor inhibition, or dynamin inactivation restored apical epithelial structure in vitro and in vivo, indicating that ZO-1 directs epithelial organization by regulating actomyosin contraction and membrane traffic. We conclude that multiple ZO-1-mediated interactions contribute to coordination of epithelial actomyosin function and genesis of unified apical surfaces.