Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
STAR Protoc ; 4(4): 102591, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37938976

RESUMEN

Isolation of skeletal muscles allows for the exploration of many complex diseases. Here, we present a protocol for isolating mice skeletal muscle myoblasts and myotubes that have been differentiated through antibody validation. We describe steps for collecting and preparing murine skeletal tissue, myoblast cell maintenance, plating, and cell differentiation. We then detail procedures for cell incubation, immunostaining, slide preparation and storage, and imaging for immunofluorescence validation.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Ratones , Animales , Mioblastos , Diferenciación Celular/fisiología , Técnica del Anticuerpo Fluorescente
2.
Adv Biol (Weinh) ; 7(8): e2300122, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37246245

RESUMEN

Machine learning has proven useful in analyzing complex biological data and has greatly influenced the course of research in structural biology and precision medicine. Deep neural network models oftentimes fail to predict the structure of complex proteins and are heavily dependent on experimentally determined structures for their training and validation. Single-particle cryogenic electron microscopy (cryoEM) is also advancing the understanding of biology and will be needed to complement these models by continuously supplying high-quality experimentally validated structures for improvements in prediction quality. In this perspective, the significance of structure prediction methods is highlighted, but the authors also ask, what if these programs cannot accurately predict a protein structure important for preventing disease? The role of cryoEM is discussed to help fill the gaps left by artificial intelligence predictive models in resolving targetable proteins and protein complexes that will pave the way for personalized therapeutics.


Asunto(s)
Inteligencia Artificial , Medicina de Precisión , Microscopía por Crioelectrón/métodos , Aprendizaje Automático , Redes Neurales de la Computación
3.
bioRxiv ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37292669

RESUMEN

OPA1 is a dynamin-related GTPase that modulates various mitochondrial functions and is involved in mitochondrial morphology. There are eight different isoforms of OPA1 in humans and five different isoforms in mice that are expressed as short or long-form isoforms. These isoforms contribute to OPA1's ability to control mitochondrial functions. However, isolating OPA1 all long and short isoforms through western blot has been a difficult task. To address this issue, we outline an optimized western blot protocol to isolate 5 different isoforms of OPA1 on the basis of different antibodies. This protocol can be used to study changes in mitochondrial structure and function.

4.
bioRxiv ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37292700

RESUMEN

Proximity ligation assays (PLA) use specific antibodies to detect endogenous protein-protein interactions. PLA is a highly useful biochemical technique that allows two proteins within close proximity to be visualized with fluorescent probes amplified by PCR. While this technique has gained prominence, the use of PLA in mouse skeletal muscle (SkM) is novel. In this article, we discuss how the PLA method can be used in SkM to study the protein-protein interactions within mitochondria-endoplasmic reticulum contact sites (MERCs).

5.
bioRxiv ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37292961

RESUMEN

Isolation of skeletal muscles allows for the exploration of many complex diseases. Fibroblasts and myoblast play important roles in skeletal muscle morphology and function. However, skeletal muscles are complex and made up of many cellular populations and validation of these populations is highly important. Therefore, in this article, we discuss a comprehensive method to isolate mice skeletal muscle, create satellite cells for tissue culture, and use immunofluorescence to validate our approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA