Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(4): e3002566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652717

RESUMEN

Phage therapy is a therapeutic approach to treat multidrug-resistant (MDR) infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells (AECs) derived from a person with cystic fibrosis (CF), we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.


Asunto(s)
Fibrosis Quística , Citocinas , Células Epiteliales , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/virología , Células Epiteliales/virología , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Citocinas/metabolismo , Fibrosis Quística/terapia , Fibrosis Quística/inmunología , Fibrosis Quística/metabolismo , Terapia de Fagos , Bacteriófagos/fisiología , Bacteriófagos/genética , Mucosa Respiratoria/virología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/inmunología , Infecciones por Pseudomonas/terapia , Infecciones por Pseudomonas/inmunología , Fagos Pseudomonas/metabolismo , Biopelículas
2.
Bull Math Biol ; 86(8): 88, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877355

RESUMEN

Models are often employed to integrate knowledge about epidemics across scales and simulate disease dynamics. While these approaches have played a central role in studying the mechanics underlying epidemics, we lack ways to reliably predict how the relationship between virulence (the harm to hosts caused by an infection) and transmission will evolve in certain virus-host contexts. In this study, we invoke evolutionary invasion analysis-a method used to identify the evolution of uninvadable strategies in dynamical systems-to examine how the virulence-transmission dichotomy can evolve in models of virus infections defined by different natural histories. We reveal peculiar patterns of virulence evolution between epidemics with different disease natural histories (SARS-CoV-2 and hepatitis C virus). We discuss the findings with regards to the public health implications of predicting virus evolution, and in broader theoretical canon involving virulence evolution in host-parasite systems.


Asunto(s)
Evolución Biológica , COVID-19 , Epidemias , Hepacivirus , Conceptos Matemáticos , Modelos Biológicos , SARS-CoV-2 , Virulencia , Humanos , Epidemias/estadística & datos numéricos , SARS-CoV-2/patogenicidad , SARS-CoV-2/genética , COVID-19/transmisión , COVID-19/virología , COVID-19/epidemiología , Hepacivirus/patogenicidad , Hepacivirus/genética , Hepatitis C/virología , Hepatitis C/transmisión , Hepatitis C/epidemiología , Interacciones Huésped-Patógeno , Modelos Epidemiológicos
3.
Trends Genet ; 36(1): 14-23, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31699305

RESUMEN

What prevents generalists from displacing specialists, despite obvious competitive advantages of utilizing a broad niche? The classic genetic explanation is antagonistic pleiotropy: genes underlying the generalism produce 'jacks-of-all-trades' that are masters of none. However, experiments challenge this assumption that mutations enabling niche expansion must reduce fitness in other environments. Theory suggests an alternative cost of generalism: decreased evolvability, or the reduced capacity to adapt. Generalists using multiple environments experience relaxed selection in any one environment, producing greater relative lag load. Additionally, mutations fixed by generalist lineages early during their evolution that avoid or compensate for antagonistic pleiotropy may limit access to certain future evolutionary trajectories. Hypothesized evolvability costs of generalism warrant further exploration, and we suggest outstanding questions meriting attention.


Asunto(s)
Evolución Biológica , Aptitud Genética/genética , Pleiotropía Genética/genética , Selección Genética/genética , Adaptación Fisiológica/genética , Interacción Gen-Ambiente , Mutación
4.
Appl Environ Microbiol ; 89(6): e0007923, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37191555

RESUMEN

Bacteriophages have received recent attention for their therapeutic potential to treat antibiotic-resistant bacterial infections. One particular idea in phage therapy is to use phages that not only directly kill their bacterial hosts but also rely on particular bacterial receptors, such as proteins involved in virulence or antibiotic resistance. In such cases, the evolution of phage resistance would correspond to the loss of those receptors, an approach termed evolutionary steering. We previously found that during experimental evolution, phage U136B can exert selection pressure on Escherichia coli to lose or modify its receptor, the antibiotic efflux protein TolC, often resulting in reduced antibiotic resistance. However, for TolC-reliant phages like U136B to be used therapeutically, we also need to study their own evolutionary potential. Understanding phage evolution is critical for the development of improved phage therapies as well as the tracking of phage populations during infection. Here, we characterized phage U136B evolution in 10 replicate experimental populations. We quantified phage dynamics that resulted in five surviving phage populations at the end of the 10-day experiment. We found that phages from all five surviving populations had evolved higher rates of adsorption on either ancestral or coevolved E. coli hosts. Using whole-genome and whole-population sequencing, we established that these higher rates of adsorption were associated with parallel molecular evolution in phage tail protein genes. These findings will be useful in future studies to predict how key phage genotypes and phenotypes influence phage efficacy and survival despite the evolution of host resistance. IMPORTANCE Antibiotic resistance is a persistent problem in health care and a factor that may help maintain bacterial diversity in natural environments. Bacteriophages ("phages") are viruses that specifically infect bacteria. We previously discovered and characterized a phage called U136B, which infects bacteria through TolC. TolC is an antibiotic resistance protein that helps bacteria pump antibiotics out of the cell. Over short timescales, phage U136B can be used to evolutionarily "steer" bacterial populations to lose or modify the TolC protein, sometimes reducing antibiotic resistance. In this study, we investigate whether U136B itself evolves to better infect bacterial cells. We discovered that the phage can readily evolve specific mutations that increase its infection rate. This work will be useful for understanding how phages can be used to treat bacterial infections.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Escherichia coli/genética , Adsorción , Mutación , Antibacterianos/farmacología
5.
Bioessays ; 43(3): e2000272, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33377530

RESUMEN

Successful therapies to combat microbial diseases and cancers require incorporating ecological and evolutionary principles. Drawing upon the fields of ecology and evolutionary biology, we present a systems-based approach in which host and disease-causing factors are considered as part of a complex network of interactions, analogous to studies of "classical" ecosystems. Centering this approach around empirical examples of disease treatment, we present evidence that successful therapies invariably engage multiple interactions with other components of the host ecosystem. Many of these factors interact nonlinearly to yield synergistic benefits and curative outcomes. We argue that these synergies and nonlinear feedbacks must be leveraged to improve the study of pathogenesis in situ and to develop more effective therapies. An eco-evolutionary systems perspective has surprising and important consequences, and we use it to articulate areas of high research priority for improving treatment strategies.


Asunto(s)
Evolución Biológica , Ecosistema
6.
Proc Natl Acad Sci U S A ; 117(31): 18670-18679, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32675236

RESUMEN

As the most abundant microbes on Earth, novel bacteriophages (phages; bacteria-specific viruses) are readily isolated from environmental samples. However, it remains challenging to characterize phage-bacteria interactions, such as the host receptor(s) phages bind to initiate infection. Here, we tested whether transposon insertion sequencing (INSeq) could be used to identify bacterial genes involved in phage binding. As proof of concept, results showed that INSeq screens successfully identified genes encoding known receptors for previously characterized viruses of Escherichia coli (phages T6, T2, T4, and T7). INSeq screens were then used to identify genes involved during infection of six newly isolated coliphages. Results showed that candidate receptors could be successfully identified for the majority (five of six) of the phages; furthermore, genes encoding the phage receptor(s) were the top hit(s) in the analyses of the successful screens. INSeq screens provide a generally useful method for high-throughput discovery of phage receptors. We discuss limitations of our approach when examining uncharacterized phages, as well as usefulness of the method for exploring the evolution of broad versus narrow use of cellular receptors among phages in the biosphere.


Asunto(s)
Proteínas Bacterianas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Receptores Virales/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/metabolismo , Elementos Transponibles de ADN/genética , ADN Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Biblioteca de Genes , Receptores Virales/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(21): 11207-11216, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32424102

RESUMEN

Bacteria frequently encounter selection by both antibiotics and lytic bacteriophages. However, the evolutionary interactions between antibiotics and phages remain unclear, in particular, whether and when phages can drive evolutionary trade-offs with antibiotic resistance. Here, we describe Escherichia coli phage U136B, showing it relies on two host factors involved in different antibiotic resistance mechanisms: 1) the efflux pump protein TolC and 2) the structural barrier molecule lipopolysaccharide (LPS). Since TolC and LPS contribute to antibiotic resistance, phage U136B should select for their loss or modification, thereby driving a trade-off between phage resistance and either of the antibiotic resistance mechanisms. To test this hypothesis, we used fluctuation experiments and experimental evolution to obtain phage-resistant mutants. Using these mutants, we compared the accessibility of specific mutations (revealed in the fluctuation experiments) to their actual success during ecological competition and coevolution (revealed in the evolution experiments). Both tolC and LPS-related mutants arise readily during fluctuation assays, with tolC mutations becoming more common during the evolution experiments. In support of the trade-off hypothesis, phage resistance via tolC mutations occurs with a corresponding reduction in antibiotic resistance in many cases. However, contrary to the hypothesis, some phage resistance mutations pleiotropically confer increased antibiotic resistance. We discuss the molecular mechanisms underlying this surprising pleiotropic result, consideration for applied phage biology, and the importance of ecology in evolution of phage resistance. We envision that phages may be useful for the reversal of antibiotic resistance, but such applications will need to account for unexpected pleiotropy and evolutionary context.


Asunto(s)
Colifagos/fisiología , Farmacorresistencia Bacteriana/fisiología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Pleiotropía Genética , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Escherichia coli/virología , Proteínas de Escherichia coli/genética , Biblioteca de Genes , Genes Bacterianos , Especificidad del Huésped , Lipopolisacáridos/genética , Lipopolisacáridos/metabolismo , Proteínas de Transporte de Membrana/genética , Mutación
8.
Appl Environ Microbiol ; 88(2): e0151421, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34788068

RESUMEN

There is an increasing interest in phage therapy as an alternative to antibiotics for treating bacterial infections, especially using phages that select for evolutionary trade-offs between increased phage resistance and decreased fitness traits, such as virulence, in target bacteria. A vast repertoire of virulence factors allows the opportunistic bacterial pathogen Shigella flexneri to invade human gut epithelial cells, replicate intracellularly, and evade host immunity through intercellular spread. It has been previously shown that OmpA is necessary for the intercellular spread of S. flexneri. We hypothesized that a phage which uses OmpA as a receptor to infect S. flexneri should select for phage-resistant mutants with attenuated intercellular spread. Here, we show that phage A1-1 requires OmpA as a receptor and selects for reduced virulence in S. flexneri. We characterized five phage-resistant mutants by measuring phenotypic changes in various traits: cell-membrane permeability, total lipopolysaccharide (LPS), sensitivity to antibiotics, and susceptibility to other phages. The results separated the mutants into two groups: R1 and R2 phenotypically resembled ompA knockouts, whereas R3, R4, and R5 were similar to LPS-deficient strains. Whole-genome sequencing confirmed that R1 and R2 had mutations in ompA, while R3, R4, and R5 had mutations in the LPS inner-core biosynthesis genes gmhA and gmhC. Bacterial plaque assays confirmed that all the phage-resistant mutants were incapable of intercellular spread. We concluded that selection for S. flexneri resistance to phage A1-1 generally reduced virulence (i.e., intercellular spread), but this trade-off could be mediated by mutations either in ompA or in LPS-core genes that likely altered OmpA conformation. IMPORTANCE Shigella flexneri is a facultative intracellular pathogen of humans and a leading cause of bacillary dysentery. With few effective treatments and rising antibiotic resistance in these bacteria, there is increasing interest in alternatives to classical infection management of S. flexneri infections. Phage therapy poses an attractive alternative, particularly if a therapeutic phage can be found that results in an evolutionary trade-off between phage resistance and bacterial virulence. Here, we isolate a novel lytic phage from water collected in Cuatro Cienegas, Mexico, which uses the OmpA porin of S. flexneri as a receptor. We use phenotypic assays and genome sequencing to show that phage A1-1 selects for phage-resistant mutants which can be grouped into two categories: OmpA-deficient mutants and LPS-deficient mutants. Despite these underlying mechanistic differences, we confirmed that naturally occurring phage A1-1 selected for evolved phage resistance which coincided with impaired intercellular spread of S. flexneri in a eukaryotic infection model.


Asunto(s)
Bacteriófagos , Disentería Bacilar , Bacteriófagos/genética , Disentería Bacilar/microbiología , Humanos , Shigella flexneri/genética , Virulencia , Factores de Virulencia
9.
J Evol Biol ; 35(11): 1475-1487, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36168737

RESUMEN

Experimental evolution studies have examined coevolutionary dynamics between bacteria and lytic phages, where two models for antagonistic coevolution dominate: arms-race dynamics (ARD) and fluctuating-selection dynamics (FSD). Here, we tested the ability for Pseudomonas aeruginosa to coevolve with phage OMKO1 during 10 passages in the laboratory, whether ARD versus FSD coevolution occurred, and how coevolution affected a predicted phenotypic trade-off between phage resistance and antibiotic sensitivity. We used a unique "deep" sampling design, where 96 bacterial clones per passage were obtained from the three replicate coevolving communities. Next, we examined phenotypic changes in growth ability, susceptibility to phage infection and resistance to antibiotics. Results confirmed that the bacteria and phages coexisted throughout the study with one community undergoing ARD, whereas the other two showed evidence for FSD. Surprisingly, only the ARD bacteria demonstrated the anticipated trade-off. Whole genome sequencing revealed that treatment populations of bacteria accrued more de novo mutations, relative to a control bacterial population. Additionally, coevolved bacteria presented mutations in genes for biosynthesis of flagella, type-IV pilus and lipopolysaccharide, with three mutations fixing contemporaneously with the occurrence of the phenotypic trade-off in the ARD-coevolved bacteria. Our study demonstrates that both ARD and FSD coevolution outcomes are possible in a single interacting bacteria-phage system and that occurrence of predicted phage-driven evolutionary trade-offs may depend on the genetics underlying evolution of phage resistance in bacteria. These results are relevant for the ongoing development of lytic phages, such as OMKO1, in personalized treatment of human patients, as an alternative to antibiotics.


Asunto(s)
Bacteriófagos , Fagos Pseudomonas , Humanos , Pseudomonas aeruginosa , Bacterias , Antibacterianos , Fagos Pseudomonas/genética
10.
Yale J Biol Med ; 95(4): 413-427, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36568830

RESUMEN

The rise of antimicrobial resistant (AMR) bacteria is a global public health threat. AMR Achromobacter bacteria pose a challenging clinical problem, particularly for those with cystic fibrosis (CF) who are predisposed to chronic bacterial lung infections. Lytic bacteriophages (phages) offer a potential alternative to treat AMR infections, with the possible benefit that phage selection for resistance in target bacteria might coincide with reduced pathogenicity. The result is a genetic "trade-off," such as increased sensitivity to chemical antibiotics, and/or decreased virulence of surviving bacteria that are phage resistant. Here, we show that two newly discovered lytic phages against Achromobacter were associated with stabilization of respiratory status when deployed to treat a chronic pulmonary infection in a CF patient using inhaled (nebulized) phage therapy. The two phages demonstrate traits that could be generally useful in their development as therapeutics, especially the possibility that the phages can select for clinically useful trade-offs if bacteria evolve phage resistance following therapy. We discuss the limitations of the current study and suggest further work that should explore whether the phages could be generally useful in targeting pulmonary or other Achromobacter infections in CF patients.


Asunto(s)
Achromobacter , Bacteriófagos , Fibrosis Quística , Terapia de Fagos , Humanos , Antibacterianos/farmacología , Fibrosis Quística/terapia , Fibrosis Quística/complicaciones
11.
Am Nat ; 191(6): E195-E207, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29750560

RESUMEN

As global environmental conditions continue to change at an unprecedented rate, many species will experience increases in natural and anthropogenic stress. Generally speaking, selection is expected to favor adaptations that reduce the negative impact of environmental stress (i.e., stress tolerance). However, natural environmental variables typically fluctuate, exhibiting various degrees of temporal autocorrelation, known as environmental colors, which may complicate evolutionary responses to stress. Here we combine experiments and theory to show that temporal environmental autocorrelation can determine long-term evolutionary responses to stress without affecting the total amount of stress experienced over time. Experimental evolution of RNA virus lineages in differing environmental autocorrelation treatments agreed closely with predictions from our theoretical models that stress tolerance is favored in less autocorrelated (whiter) environments but disfavored in more autocorrelated (redder) environments. This is explained by an interaction between environmental autocorrelation and a phenotypic trade-off between stress tolerance and reproductive ability. The degree to which environmental autocorrelation influences evolutionary trajectories depends on the shape of this trade-off as well as the relative level of tolerance exhibited by novel mutants. These results suggest that long-term evolutionary dynamics depend not only on the overall strength of selection but also on the way that selection is distributed over time.


Asunto(s)
Evolución Biológica , Interacción Gen-Ambiente , Modelos Genéticos , Pseudomonas syringae/genética , Estrés Fisiológico
12.
Annu Rev Microbiol ; 67: 519-41, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23808330

RESUMEN

Are viruses more biologically successful than cellular life? Here we examine many ways of gauging biological success, including numerical abundance, environmental tolerance, type biodiversity, reproductive potential, and widespread impact on other organisms. We especially focus on successful ability to evolutionarily adapt in the face of environmental change. Viruses are often challenged by dynamic environments, such as host immune function and evolved resistance as well as abiotic fluctuations in temperature, moisture, and other stressors that reduce virion stability. Despite these challenges, our experimental evolution studies show that viruses can often readily adapt, and novel virus emergence in humans and other hosts is increasingly problematic. We additionally consider whether viruses are advantaged in evolvability-the capacity to evolve-and in avoidance of extinction. On the basis of these different ways of gauging biological success, we conclude that viruses are the most successful inhabitants of the biosphere.


Asunto(s)
Evolución Biológica , Fenómenos Fisiológicos de los Virus , Adaptación Biológica , Ambiente , Virus/genética
13.
Proc Natl Acad Sci U S A ; 112(3): 827-32, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25561542

RESUMEN

Most isolates of human rhinovirus, the common cold virus, replicate more robustly at the cool temperatures found in the nasal cavity (33-35 °C) than at core body temperature (37 °C). To gain insight into the mechanism of temperature-dependent growth, we compared the transcriptional response of primary mouse airway epithelial cells infected with rhinovirus at 33 °C vs. 37 °C. Mouse airway cells infected with mouse-adapted rhinovirus 1B exhibited a striking enrichment in expression of antiviral defense response genes at 37 °C relative to 33 °C, which correlated with significantly higher expression levels of type I and type III IFN genes and IFN-stimulated genes (ISGs) at 37 °C. Temperature-dependent IFN induction in response to rhinovirus was dependent on the MAVS protein, a key signaling adaptor of the RIG-I-like receptors (RLRs). Stimulation of primary airway cells with the synthetic RLR ligand poly I:C led to greater IFN induction at 37 °C relative to 33 °C at early time points poststimulation and to a sustained increase in the induction of ISGs at 37 °C relative to 33 °C. Recombinant type I IFN also stimulated more robust induction of ISGs at 37 °C than at 33 °C. Genetic deficiency of MAVS or the type I IFN receptor in infected airway cells permitted higher levels of viral replication, particularly at 37 °C, and partially rescued the temperature-dependent growth phenotype. These findings demonstrate that in mouse airway cells, rhinovirus replicates preferentially at nasal cavity temperature due, in part, to a less efficient antiviral defense response of infected cells at cool temperature.


Asunto(s)
Inmunidad Innata , Rhinovirus/inmunología , Tráquea/virología , Replicación Viral , Animales , Ratones , Datos de Secuencia Molecular , Rhinovirus/fisiología , Temperatura
14.
J Evol Biol ; 34(12): 1851-1854, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34907625
15.
Proc Biol Sci ; 282(1813): 20150801, 2015 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-26246544

RESUMEN

Although differing rates of environmental turnover should be consequential for the dynamics of adaptive change, this idea has been rarely examined outside of theory. In particular, the importance of RNA viruses in disease emergence warrants experiments testing how differing rates of novel host invasion may impact the ability of viruses to adaptively shift onto a novel host. To test whether the rate of environmental turnover influences adaptation, we experimentally evolved 144 Sindbis virus lineages in replicated tissue-culture environments, which transitioned from being dominated by a permissive host cell type to a novel host cell type. The rate at which the novel host 'invaded' the environment varied by treatment. The fitness (growth rate) of evolved virus populations was measured on each host type, and molecular substitutions were mapped via whole genome consensus sequencing. Results showed that virus populations more consistently reached high fitness levels on the novel host when the novel host 'invaded' the environment more gradually, and gradual invasion resulted in less variable genomic outcomes. Moreover, virus populations that experienced a rapid shift onto the novel host converged upon different genotypes than populations that experienced a gradual shift onto the novel host, suggesting a strong effect of historical contingency.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Interacciones Huésped-Patógeno/fisiología , Virus Sindbis/fisiología , Ambiente , Virus Sindbis/genética
16.
PLoS Genet ; 8(11): e1003102, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209446

RESUMEN

The modulation of fitness by single mutational substitutions during environmental change is the most fundamental consequence of natural selection. The antagonistic tradeoffs of pleiotropic mutations that can be selected under changing environments therefore lie at the foundation of evolutionary biology. However, the molecular basis of fitness tradeoffs is rarely determined in terms of how these pleiotropic mutations affect protein structure. Here we use an interdisciplinary approach to study how antagonistic pleiotropy and protein function dictate a fitness tradeoff. We challenged populations of an RNA virus, bacteriophage Φ6, to evolve in a novel temperature environment where heat shock imposed extreme virus mortality. A single amino acid substitution in the viral lysin protein P5 (V207F) favored improved stability, and hence survival of challenged viruses, despite a concomitant tradeoff that decreased viral reproduction. This mutation increased the thermostability of P5. Crystal structures of wild-type, mutant, and ligand-bound P5 reveal the molecular basis of this thermostabilization--the Phe207 side chain fills a hydrophobic cavity that is unoccupied in the wild-type--and identify P5 as a lytic transglycosylase. The mutation did not reduce the enzymatic activity of P5, suggesting that the reproduction tradeoff stems from other factors such as inefficient capsid assembly or disassembly. Our study demonstrates how combining experimental evolution, biochemistry, and structural biology can identify the mechanisms that drive the antagonistic pleiotropic phenotypes of an individual point mutation in the classic evolutionary tug-of-war between survival and reproduction.


Asunto(s)
Evolución Biológica , Estabilidad de Enzimas/genética , Aptitud Genética/genética , Virus ARN/genética , Selección Genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Sustitución de Aminoácidos/fisiología , Bacteriófagos/química , Bacteriófagos/genética , Cápside/química , Cristalografía por Rayos X , Estabilidad de Enzimas/fisiología , Aptitud Genética/fisiología , Virus ARN/química , Proteínas Virales/química , Proteínas Virales/genética
17.
Viruses ; 16(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38932268

RESUMEN

Experimental evolution studies, in which biological populations are evolved in a specific environment over time, can address questions about the nature of spontaneous mutations, responses to selection, and the origins and maintenance of novel traits. Here, we review more than 30 years of experimental evolution studies using the bacteriophage (phage) Φ6 cystovirus. Similar to many lab-studied bacteriophages, Φ6 has a high mutation rate, large population size, fast generation time, and can be genetically engineered or cryogenically frozen, which facilitates its rapid evolution in the laboratory and the subsequent characterization of the effects of its mutations. Moreover, its segmented RNA genome, outer membrane, and capacity for multiple phages to coinfect a single host cell make Φ6 a good non-pathogenic model for investigating the evolution of RNA viruses that infect humans. We describe experiments that used Φ6 to address the fitness effects of spontaneous mutations, the consequences of evolution in the presence of coinfection, the evolution of host ranges, and mechanisms and consequences of the evolution of thermostability. We highlight open areas of inquiry where further experimentation on Φ6 could inform predictions for pathogenic viruses.


Asunto(s)
Bacteriófago phi 6 , Mutación , Bacteriófago phi 6/genética , Bacteriófago phi 6/fisiología , Especificidad del Huésped , Evolución Molecular , Cystoviridae/genética , Genoma Viral , Humanos , Evolución Molecular Dirigida , Evolución Biológica
18.
bioRxiv ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38370761

RESUMEN

Phage therapy is a therapeutic approach to treat multidrug resistant infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. We determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.

19.
Sci Rep ; 14(1): 2657, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302552

RESUMEN

Bacteriophage therapy is one potential strategy to treat antimicrobial resistant or persistent bacterial infections, and the year 2021 marked the centennial of Felix d'Hérelle's first publication on the clinical applications of phages. At the Center for Phage Biology & Therapy at Yale University, a preparatory modular approach has been established to offer safe and potent phages for single-patient investigational new drug applications while recognizing the time constraints imposed by infection(s). This study provides a practical walkthrough of the pipeline with an Autographiviridae phage targeting Pseudomonas aeruginosa (phage vB_PaeA_SB, abbreviated to ΦSB). Notably, a thorough phage characterization and the evolutionary selection pressure exerted on bacteria by phages, analogous to antibiotics, are incorporated into the pipeline.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Infecciones por Pseudomonas , Fagos Pseudomonas , Humanos , Pseudomonas aeruginosa , Universidades , Fagos Pseudomonas/genética , Infecciones por Pseudomonas/terapia , Infecciones por Pseudomonas/microbiología
20.
Med ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38917792

RESUMEN

BACKGROUND: Cystic fibrosis (CF) patients are prone to recurrent multi-drug-resistant (MDR) bacterial lung infections. Under this scenario, phage therapy has been proposed as a promising tool. However, the limited number of reported cases hampers the understanding of clinical outcomes. Anti-phage immune responses have often been overlooked and only described following invasive routes of administration. METHODS: Three monophage treatments against Staphylococcus aureus and/or Pseudomonas aeruginosa lung infections were conducted in cystic fibrosis patients. In-house phage preparations were nebulized over 10 days with standard-of-care antibiotics. Clinical indicators, bacterial counts, phage and antibiotic susceptibility, phage detection, and immune responses were monitored. FINDINGS: Bacterial load was reduced by 3-6 log in two of the treatments. No adverse events were described. Phages remained in sputum up to 33 days after completion of the treatment. In all cases, phage-neutralizing antibodies were detected in serum from 10 to 42 days post treatment, with this being the first report of anti-phage antibodies after nebulized therapy. CONCLUSIONS: Nebulized phage therapy reduced bacterial load, improving quality of life even without bacterial eradication. The emergence of antibodies emphasizes the importance of long-term monitoring to better understand clinical outcomes. These findings encourage the use of personalized monophage therapies in contrast to ready-to-use cocktails, which might induce undesirable antibody generation. FUNDING: This study was supported by the Spanish Ministry of Science, Innovation and Universities; Generalitat Valenciana; and a crowdfunding in collaboration with the Spanish Cystic Fibrosis Foundation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA