Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Genet ; 17(8): e1009689, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34383745

RESUMEN

Elucidating the transcriptional regulatory networks that underlie growth and development requires robust ways to define the complete set of transcription factor (TF) binding sites. Although TF-binding sites are known to be generally located within accessible chromatin regions (ACRs), pinpointing these DNA regulatory elements globally remains challenging. Current approaches primarily identify binding sites for a single TF (e.g. ChIP-seq), or globally detect ACRs but lack the resolution to consistently define TF-binding sites (e.g. DNAse-seq, ATAC-seq). To address this challenge, we developed MNase-defined cistrome-Occupancy Analysis (MOA-seq), a high-resolution (< 30 bp), high-throughput, and genome-wide strategy to globally identify putative TF-binding sites within ACRs. We used MOA-seq on developing maize ears as a proof of concept, able to define a cistrome of 145,000 MOA footprints (MFs). While a substantial majority (76%) of the known ATAC-seq ACRs intersected with the MFs, only a minority of MFs overlapped with the ATAC peaks, indicating that the majority of MFs were novel and not detected by ATAC-seq. MFs were associated with promoters and significantly enriched for TF-binding and long-range chromatin interaction sites, including for the well-characterized FASCIATED EAR4, KNOTTED1, and TEOSINTE BRANCHED1. Importantly, the MOA-seq strategy improved the spatial resolution of TF-binding prediction and allowed us to identify 215 motif families collectively distributed over more than 100,000 non-overlapping, putatively-occupied binding sites across the genome. Our study presents a simple, efficient, and high-resolution approach to identify putative TF footprints and binding motifs genome-wide, to ultimately define a native cistrome atlas.


Asunto(s)
Huella de ADN/métodos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Zea mays/genética , Sitios de Unión , Secuenciación de Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Elementos Reguladores de la Transcripción , Secuenciación Completa del Genoma
2.
PLoS Pathog ; 11(7): e1004993, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26133373

RESUMEN

Kaposi's Sarcoma-Associated Herpesvirus (KSHV) is an oncogenic virus which has adapted unique mechanisms to modulate the cellular microenvironment of its human host. The pathogenesis of KSHV is intimately linked to its manipulation of cellular signaling pathways, including the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. We have previously shown that KSHV ORF45 contributes to the sustained activation of both ERK and p90 ribosomal S6 kinase (RSK, a major functional mediator of ERK/MAPK signaling) during KSHV lytic replication. ORF45-activated RSK is required for optimal KSHV lytic gene expression and progeny virion production, though the underlying mechanisms downstream of this activation are still unclear. We hypothesized that the activation of RSK by ORF45 causes differential phosphorylation of cellular and viral substrates, affecting biological processes essential for efficient KSHV lytic replication. Accordingly, we observed widespread and significant differences in protein phosphorylation upon induction of lytic replication. Mass-spectrometry-based phosphoproteomic screening identified putative substrates of ORF45-activated RSK in KSHV-infected cells. Bioinformatic analyses revealed that nuclear proteins, including several transcriptional regulators, were overrepresented among these candidates. We validated the ORF45/RSK-dependent phosphorylation of several putative substrates by employing KSHV BAC mutagenesis, kinase inhibitor treatments, and/or CRISPR-mediated knockout of RSK in KSHV-infected cells. Furthermore, we assessed the consequences of knocking out these substrates on ORF45/RSK-dependent regulation of gene expression and KSHV progeny virion production. Finally, we show data to support that ORF45 regulates the translational efficiency of a subset of viral/cellular genes with complex secondary structure in their 5' UTR. Altogether, these data shed light on the mechanisms by which KSHV ORF45 manipulates components of the host cell machinery via modulation of RSK activity. Thus, this study has important implications for the pathobiology of KSHV and other diseases in which RSK activity is dysregulated.


Asunto(s)
Infecciones por Herpesviridae/metabolismo , Herpesvirus Humano 8/fisiología , Interacciones Huésped-Parásitos/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Replicación Viral/fisiología , Western Blotting , Línea Celular , Regulación Viral de la Expresión Génica/fisiología , Técnicas de Inactivación de Genes , Humanos , Inmunoprecipitación , Espectrometría de Masas , Fosforilación , Proteómica/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
3.
J Virol ; 89(1): 195-207, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25320298

RESUMEN

UNLABELLED: We have previously shown that ORF45, an immediate-early and tegument protein of Kaposi's sarcoma-associated herpesvirus (KSHV), causes sustained activation of p90 ribosomal S6 kinases (RSKs) and extracellular regulated kinase (ERK) (E. Kuang, Q. Tang, G. G. Maul, and F. Zhu, J Virol 82:1838-1850, 2008, http://dx.doi.org/10.1128/JVI.02119-07). We now have identified the critical region of ORF45 that is involved in RSK interaction and activation. Alanine scanning mutagenesis of this region revealed that a single F66A point mutation abolished binding of ORF45 to RSK or ERK and, consequently, its ability to activate the kinases. We introduced the F66A mutation into BAC16 (a bacterial artificial chromosome clone containing the entire infectious KSHV genome), producing BAC16-45F66A. In parallel, we also repaired the mutation and obtained a revertant, BAC16-45A66F. The reconstitution of these mutants in iSLK cells demonstrated that the ORF45-F66A mutant failed to cause sustained ERK and RSK activation during lytic reactivation, resulting in dramatic differences in the phosphoproteomic profile between the wild-type virus-infected cells and the mutant virus-infected cells. ORF45 mutation or deletion also was accompanied by a noticeable decreased in viral gene expression during lytic reactivation. Consequently, the ORF45-F66A mutant produced significantly fewer infectious progeny virions than the wild type or the revertant. These results suggest a critical role for ORF45-mediated RSK activation in KSHV lytic replication. IMPORTANCE: KSHV is the causative agent of three human malignancies. KSHV pathogenesis is intimately linked to its ability to modulate the host cell microenvironment and to facilitate efficient production of progeny viral particles. We previously described the mechanism by which the KSHV lytic protein ORF45 activates the cellular kinases ERK and RSK. We now have mapped the critical region of ORF45 responsible for binding and activation of ERK/RSK to a single residue, F66. We mutated this amino acid of ORF45 (F66A) and introduced the mutation into a newly developed bacterial artificial chromosome containing the KSHV genome (BAC16). This system has provided us with a useful tool to characterize the functions of ORF45-activated RSK upon KSHV lytic reactivation. We show that viral gene expression and virion production are significantly reduced by F66A mutation, indicating a critical role for ORF45-activated RSK during KSHV lytic replication.


Asunto(s)
Herpesvirus Humano 8/fisiología , Interacciones Huésped-Patógeno , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Replicación Viral , Línea Celular , Análisis Mutacional de ADN , Activación Enzimática , Humanos , Proteínas Inmediatas-Precoces/genética , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas
5.
Front Plant Sci ; 12: 645218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679862

RESUMEN

In eukaryotes, the nuclear envelope (NE) encloses chromatin and separates it from the rest of the cell. The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex physically bridges across the NE, linking nuclear and cytoplasmic components. In plants, these LINC complexes are beginning to be ascribed roles in cellular and nuclear functions, including chromatin organization, regulation of nuclei shape and movement, and cell division. Homologs of core LINC components, KASH and SUN proteins, have previously been identified in maize. Here, we characterized the presumed LINC-associated maize nucleoskeletal proteins NCH1 and NCH2, homologous to members of the plant NMCP/CRWN family, and MKAKU41, homologous to AtKAKU4. All three proteins localized to the nuclear periphery when transiently and heterologously expressed as fluorescent protein fusions in Nicotiana benthamiana. Overexpression of MKAKU41 caused dramatic changes in the organization of the nuclear periphery, including nuclear invaginations that stained positive for non-nucleoplasmic markers of the inner and outer NE membranes, and the ER. The severity of these invaginations was altered by changes in LINC connections and the actin cytoskeleton. In maize, MKAKU41 appeared to share genetic functions with other LINC components, including control of nuclei shape, stomatal complex development, and pollen viability. Overall, our data show that NCH1, NCH2, and MKAKU41 have characteristic properties of LINC-associated plant nucleoskeletal proteins, including interactions with NE components suggestive of functions at the nuclear periphery that impact the overall nuclear architecture.

6.
Plant Direct ; 5(8): e337, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34430792

RESUMEN

Plant chromatin dynamics are generally recognized as playing a role in the genomic response to environmental stress. Although stress-induced transcriptional activities of LTR-retrotransposons have been reported, whether the stress response can be detected at the level of chromatin structure for LTR-retrotransposons is largely unknown. Using differential nuclease sensitivity profiling, we identified that two out of 29 maize LTR-retrotransposon families change their chromatin structure in response to drought stress in leaf tissue. The two LTR-retrotransposon families, uloh and vegu, are classified as nonautonomous LTR-retrotransposons. Differently from other families, the chromatin structure of these two families shifted from more open in normal conditions to more closed following drought stress. Although uloh and vegu lack sequence similarity, most of them shared an intriguing feature of having a new and uncharacterized insertion of a DNA sequence near one side of an LTR. In the uloh family, nine members with a strong drought response also exhibited a drought-induced reduction of published H3K4me3 histone modification in the inserted DNA region, implicating this modification in the chromatin structural changes. Our results provide new insight into how LTR-retrotransposons can alter their chromatin structure following stress response in plants.

7.
Data Brief ; 20: 358-363, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30175199

RESUMEN

Presented here are data from Next-Generation Sequencing of differential micrococcal nuclease digestions of formaldehyde-crosslinked chromatin in selected tissues of maize (Zea mays) inbred line B73. Supplemental materials include a wet-bench protocol for making DNS-seq libraries, the DNS-seq data processing pipeline for producing genome browser tracks. This report also includes the peak-calling pipeline using the iSeg algorithm to segment positive and negative peaks from the DNS-seq difference profiles. The data repository for the sequence data is the NCBI SRA, BioProject Accession PRJNA445708.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA