Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Anal Chem ; 88(7): 4036-40, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26954108

RESUMEN

Biosensing within complex biological samples requires a sensor that can compensate for fluctuations in the signal due to changing environmental conditions and nonspecific binding events. To achieve this, we developed a novel self-referenced biosensor consisting of two almost identically sized dye-doped polystyrene microspheres placed on adjacent holes at the tip of a microstructured optical fiber (MOF). Here self-referenced biosensing is demonstrated with the detection of Neutravidin in undiluted, immunoglobulin-deprived human serum samples. The MOF allows remote excitation and collection of the whispering gallery modes (WGMs) of the microspheres while also providing a robust and easy to manipulate dip-sensing platform. By taking advantage of surface functionalization techniques, one microsphere acts as a dynamic reference, compensating for nonspecific binding events and changes in the environment (such as refractive index and temperature), while the other microsphere is functionalized to detect a specific interaction. The almost identical size allows the two spheres to have virtually identical refractive index sensitivity and surface area, while still having discernible WGM spectra. This ensures their responses to nonspecific binding and environmental changes are almost identical, whereby any specific changes, such as binding events, can be monitored via the relative movement between the two sets of WGM peaks.


Asunto(s)
Avidina/sangre , Técnicas Biosensibles , Fibras Ópticas , Humanos , Microesferas , Poliestirenos/química , Termodinámica
3.
Appl Microbiol Biotechnol ; 100(6): 2761-73, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26857464

RESUMEN

Beer spoilage microorganisms present a major risk for the brewing industry and can lead to cost-intensive recall of contaminated products and damage to brand reputation. The applicability of molecular profiling using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in combination with Biotyper software was investigated for the identification of beer spoilage microorganisms from routine brewery quality control samples. Reference mass spectrum profiles for three of the most common bacterial beer spoilage microorganisms (Lactobacillus lindneri, Lactobacillus brevis and Pediococcus damnosus), four commercially available brewing yeast strains (top- and bottom-fermenting) and Dekkera/Brettanomyces bruxellensis wild yeast were established, incorporated into the Biotyper reference library and validated by successful identification after inoculation into beer. Each bacterial species could be accurately identified and distinguished from one another and from over 5600 other microorganisms present in the Biotyper database. In addition, wild yeast contaminations were rapidly detected and distinguished from top- and bottom-fermenting brewing strains. The applicability and integration of mass spectrometry profiling using the Biotyper platform into existing brewery quality assurance practices within industry were assessed by analysing routine microbiology control samples from a local brewery, where contaminating microorganisms could be reliably identified. Brewery-isolated microorganisms not present in the Biotyper database were further analysed for identification using LC-MS/MS methods. This renders the Biotyper platform a promising candidate for biological quality control testing within the brewing industry as a more rapid, high-throughput and cost-effective technology that can be tailored for the detection of brewery-specific spoilage organisms from the local environment.


Asunto(s)
Bacterias/química , Bacterias/clasificación , Cerveza/microbiología , Microbiología de Alimentos/métodos , Hongos/química , Hongos/clasificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Bacterias/aislamiento & purificación , Cromatografía Liquida , Hongos/aislamiento & purificación , Espectrometría de Masas en Tándem
4.
Breast Cancer Res ; 17: 46, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25887862

RESUMEN

INTRODUCTION: Podocalyxin (gene name PODXL) is a CD34-related sialomucin implicated in the regulation of cell adhesion, migration and polarity. Upregulated expression of podocalyxin is linked to poor patient survival in epithelial cancers. However, it is not known if podocalyxin has a functional role in tumor progression. METHODS: We silenced podocalyxin expression in the aggressive basal-like human (MDA-MB-231) and mouse (4T1) breast cancer cell lines and also overexpressed podocalyxin in the more benign human breast cancer cell line, MCF7. We evaluated how podocalyxin affects tumorsphere formation in vitro and compared the ability of podocalyxin-deficient and podocalyxin-replete cell lines to form tumors and metastasize using xenogenic or syngeneic transplant models in mice. Finally, in an effort to develop therapeutic treatments for systemic cancers, we generated a series of antihuman podocalyxin antibodies and screened these for their ability to inhibit tumor progression in xenografted mice. RESULTS: Although deletion of podocalyxin does not alter gross cell morphology and growth under standard (adherent) culture conditions, expression of PODXL is required for efficient formation of tumorspheres in vitro. Correspondingly, silencing podocalyxin resulted in attenuated primary tumor growth and invasiveness in mice and severely impaired the formation of distant metastases. Likewise, in competitive tumor engraftment assays where we injected a 50:50 mixture of control and shPODXL (short-hairpin RNA targeting PODXL)-expressing cells, we found that podocalyxin-deficient cells exhibited a striking decrease in the ability to form clonal tumors in the lung, liver and bone marrow. Finally, to validate podocalyxin as a viable target for immunotherapy, we screened a series of novel antihuman podocalyxin antibodies for their ability to inhibit tumor progression in vivo. One of these antibodies, PODOC1, potently blocked tumor growth and metastasis. CONCLUSIONS: We show that podocalyxin plays a key role in the formation of primary tumors and distant tumor metastasis. In addition, we validate podocalyxin as potential target for monoclonal antibody therapy to inhibit primary tumor growth and systemic dissemination.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Sialoglicoproteínas/antagonistas & inhibidores , Sialoglicoproteínas/metabolismo , Animales , Anticuerpos Monoclonales/administración & dosificación , Antineoplásicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Mamarias Animales , Ratones , Metástasis de la Neoplasia , Interferencia de ARN , ARN Interferente Pequeño/genética , Sialoglicoproteínas/genética , Esferoides Celulares , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Immunol Cell Biol ; 93(8): 735-43, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25753393

RESUMEN

Phosphoinositide 3-kinase γ (PI3Kγ) consists of the catalytic subunit p110γ that forms a mutually exclusive heterodimer with one of the two adaptor subunits, p101 or p84. Although activation of PI3Kγ is necessary for cell migration downstream of G-protein-coupled receptor engagement, particularly within the immune system, aberrant PI3Kγ signalling has been associated with transformation, increased migration and the progression of multiple cancer types. Regulation of PI3Kγ signal activation and duration is critical to controlling and maintaining coordinated cellular migration; however, the mechanistic basis for this is not well understood. We have recently demonstrated that, in contrast to the tumour-promoting potential of p110γ and p101, p84 possesses tumour-suppressor activity, suggesting a negative regulatory role within PI3Kγ signalling. The present study investigated the role of p84 phosphorylation in the context of PI3Kγ signalling, cell migration and p84-mediated tumour suppression. Two putative phosphorylation sites were characterised within p84, Ser358 and Thr607. Expression of wild-type p84 reduced the oncogenic potential of MDA.MB.231 cells and inhibited metastatic lung colonisation in vivo, effects that were dependent on Thr607. Furthermore, loss of Thr607 enhanced migration of MDA.MB.231 cells in vitro and prevented the induction of p84/p110γ dimers. The dimerisation of wild-type p84 with p110γ was not detected at the plasma membrane, indicating an inhibitory interaction preventing PI3Kγ lipid-kinase activity. In contrast, Ser358 phosphorylation was not determined to be critical for p84 activity in the context of migration. Our findings suggest that p84 binding to p110γ may represent a novel negative feedback signal that terminates PI3Kγ activity.


Asunto(s)
Movimiento Celular , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Complejos Multiproteicos/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Línea Celular , Quimiocina CXCL12/farmacología , Fosfatidilinositol 3-Quinasa Clase Ib/química , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Femenino , Expresión Génica , Humanos , Inmunoprecipitación , Ratones , Datos de Secuencia Molecular , Mutación , Fosforilación , Unión Proteica , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Acoplados a Proteínas G , Proteínas Recombinantes de Fusión , Transducción de Señal/efectos de los fármacos
6.
J Proteome Res ; 13(8): 3655-70, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24933266

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is a murine model of multiple sclerosis, a chronic neurodegenerative and inflammatory autoimmune condition of the central nervous system (CNS). Pathology is driven by the infiltration of autoreactive CD4(+) lymphocytes into the CNS, where they attack neuronal sheaths causing ascending paralysis. We used an isotope-coded protein labeling approach to investigate the proteome of CD4(+) cells isolated from the spinal cord and brain of mice at various stages of EAE progression in two EAE disease models: PLP139-151-induced relapsing-remitting EAE and MOG35-55-induced chronic EAE, which emulate the two forms of human multiple sclerosis. A total of 1120 proteins were quantified across disease onset, peak-disease, and remission phases of disease, and of these 13 up-regulated proteins of interest were identified with functions relating to the regulation of inflammation, leukocyte adhesion and migration, tissue repair, and the regulation of transcription/translation. Proteins implicated in processes such as inflammation (S100A4 and S100A9) and tissue repair (annexin A1), which represent key events during EAE progression, were validated by quantitative PCR. This is the first targeted analysis of autoreactive cells purified from the CNS during EAE, highlighting fundamental CD4(+) cell-driven processes that occur during the initiation of relapse and remission stages of disease.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Sistema Nervioso Central/citología , Encefalomielitis Autoinmune Experimental/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Proteoma/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Adhesión Celular/genética , Movimiento Celular/genética , Sistema Nervioso Central/metabolismo , Cromatografía Líquida de Alta Presión , Femenino , Citometría de Flujo , Espectrometría de Masas , Ratones , Datos de Secuencia Molecular , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/inmunología , Glicoproteína Mielina-Oligodendrócito/genética , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Toxina del Pertussis , Proteoma/genética
7.
Immunol Cell Biol ; 92(10): 815-24, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25027038

RESUMEN

Over the last decade, the significance of the homeostatic CC chemokine receptor-7 and its ligands CC chemokine ligand-19 (CCL19) and CCL21, in various types of cancer, particularly mammary carcinoma, has been highlighted. The chemokine receptor CCX-CKR is a high-affinity receptor for these chemokine ligands but rather than inducing classical downstream signalling events promoting migration, it instead sequesters and targets its ligands for degradation, and appears to function as a regulator of the bioavailability of these chemokines in vivo. Therefore, in this study, we tested the hypothesis that local regulation of chemokine levels by CCX-CKR expressed on tumours alters tumour growth and metastasis in vivo. Expression of CCX-CKR on 4T1.2 mouse mammary carcinoma cells inhibited orthotopic tumour growth. However, this effect could not be correlated with chemokine scavenging in vivo and was not mediated by host adaptive immunity. Conversely, expression of CCX-CKR on 4T1.2 cells resulted in enhanced spontaneous metastasis and haematogenous metastasis in vivo. In vitro characterisation of the tumourigenicity of CCX-CKR-expressing 4T1.2 cells suggested accelerated epithelial-mesenchymal transition (EMT) revealed by their more invasive and motile character, lower adherence to the extracellular matrix and to each other, and greater resistance to anoikis. Further analysis of CCX-CKR-expressing 4T1.2 cells also revealed that transforming growth factor (TGF)-ß1 expression was increased both at mRNA and protein levels leading to enhanced autocrine phosphorylation of Smad 2/3 in these cells. Together, our data show a novel function for the chemokine receptor CCX-CKR as a regulator of TGF-ß1 expression and the EMT in breast cancer cells.


Asunto(s)
Carcinoma/patología , Transición Epitelial-Mesenquimal , Neoplasias Mamarias Experimentales/patología , Receptores CCR/metabolismo , Inmunidad Adaptativa , Animales , Carcinoma/genética , Carcinoma/metabolismo , Quimiocinas/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Homeostasis , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Metástasis de la Neoplasia , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
8.
Bioessays ; 32(12): 1067-76, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20954179

RESUMEN

Chemokines (chemotactic cytokines) drive and direct leukocyte traffic. New evidence suggests that the unusual CCR6/CCL20 chemokine receptor/ligand axis provides key homing signals for recently identified cells of the adaptive immune system, recruiting both pro-inflammatory and suppressive T cell subsets. Thus CCR6 and CCL20 have been recently implicated in various human pathologies, particularly in autoimmune disease. These studies have revealed that targeting CCR6/CCL20 can enhance or inhibit autoimmune disease depending on the cellular basis of pathogenesis and the cell subtype most affected through different CCR6/CCL20 manipulations. Here, we discuss the significance of this chemokine receptor/ligand axis in immune and inflammatory functions, consider the potential for targeting CCR6/CCL20 in human autoimmunity and propose that the shared evolutionary origins of pro-inflammatory and regulatory T cells may contribute to the reason why both immune activation and regulation might be controlled through the same chemokine pathway.


Asunto(s)
Quimiocina CCL20/inmunología , Tolerancia Inmunológica , Inflamación/inmunología , Receptores CCR6/inmunología , Linfocitos T/inmunología , Inmunidad Adaptativa , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Humanos , Linfocitos T Reguladores/metabolismo , Células Th17/metabolismo
9.
J Control Release ; 317: 130-141, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31756392

RESUMEN

Sustained antigen and adjuvant availability have been shown to improve antiviral immune responses following vaccination. Transcutaneous delivery of vaccines using microneedles has also shown promise and may be particularly relevant for mosquito-borne viruses. We aim to combine these traits to create a three-component Protein Subunit vaccine on Microneedle Arrays (PSMNs) for transcutaneous delivery using layer-by-layer (LbL) assembly. Polymer multilayer thin films were generated to co-deliver a model combination of three chemically distinct vaccine components, a dengue virus Envelope protein Domain III (EDIII) subunit antigen and two adjuvants, a double-stranded RNA (Poly (inosinic:cytidylic acid) (PolyI:C)) and an amphiphilic hexapeptide, Pam3CSK4. Following application of PSMNs to the skin, implanted thin films facilitated sustained and temporal release of individual vaccine components from polymer multilayers. By modulating LbL composition and architecture, component release profiles in the skin could be independently tuned to allow release of adjuvants and antigen from days up to two weeks. Uptake of antigen and adjuvant from implanted vaccine films by antigen-presenting cells was demonstrated using in vivo mouse and ex vivo human skin models. Overall, we believe that such modular vaccine strategies offer design principles for enhancing the immunogenicity of protein subunit vaccines.


Asunto(s)
Adyuvantes Inmunológicos , Polímeros , Animales , Ratones , Subunidades de Proteína , Vacunación , Vacunas de Subunidad
10.
Bioeng Transl Med ; 4(2): e10127, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31249877

RESUMEN

Current live-attenuated dengue vaccines require strict cold chain storage. Methods to preserve dengue virus (DENV) viability, which enable vaccines to be transported and administered at ambient temperatures, will be decisive towards the implementation of affordable global vaccination schemes with broad immunization coverage in resource-limited areas. We have developed a microneedle (MN)-based vaccine platform for the stabilization and intradermal delivery of live DENV from minimally invasive skin patches. Dengue virus-stabilized microneedle arrays (VSMN) were fabricated using saccharide-based formulation of virus and could be stored dry at ambient temperature up to 3 weeks with maintained virus viability. Following intradermal vaccination, VSMN-delivered DENV was shown to elicit strong neutralizing antibody responses and protection from viral challenge, comparable to that of the conventional liquid vaccine administered subcutaneously. This work supports the potential for MN-based dengue vaccine technology and the progression towards cold chain-independence. Dengue virus can be stabilized using saccharide-based formulations and coated on microneedle array vaccine patches for storage in dry state with preserved viability at ambient temperature (VSMN; virus-stabilized microneedle arrays).

11.
Nat Commun ; 10(1): 4792, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31636263

RESUMEN

The treatment of bacterial infections is hindered by the presence of biofilms and metabolically inactive persisters. Here, we report the synthesis of an enantiomeric block co-beta-peptide, poly(amido-D-glucose)-block-poly(beta-L-lysine), with high yield and purity by one-shot one-pot anionic-ring opening (co)polymerization. The co-beta-peptide is bactericidal against methicillin-resistant Staphylococcus aureus (MRSA), including replicating, biofilm and persister bacterial cells, and also disperses biofilm biomass. It is active towards community-acquired and hospital-associated MRSA strains which are resistant to multiple drugs including vancomycin and daptomycin. Its antibacterial activity is superior to that of vancomycin in MRSA mouse and human ex vivo skin infection models, with no acute in vivo toxicity in repeated dosing in mice at above therapeutic levels. The copolymer displays bacteria-activated surfactant-like properties, resulting from contact with the bacterial envelope. Our results indicate that this class of non-toxic molecule, effective against different bacterial sub-populations, has promising potential for the treatment of S. aureus infections.


Asunto(s)
Biopelículas/efectos de los fármacos , Glucosa/síntesis química , Lisina/análogos & derivados , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , beta-Lactamas/síntesis química , Células 3T3 , Animales , Farmacorresistencia Bacteriana Múltiple , Glucosa/farmacología , Glucosa/uso terapéutico , Humanos , Técnicas In Vitro , Lisina/síntesis química , Lisina/farmacología , Lisina/uso terapéutico , Ratones , Pruebas de Sensibilidad Microbiana , Polimerizacion , beta-Lactamas/farmacología , beta-Lactamas/uso terapéutico
12.
ACS Nano ; 12(10): 10272-10280, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30272942

RESUMEN

The utility of layer-by-layer (LbL) coated microneedle (MN) skin patches for transdermal drug delivery has proven to be a promising approach, with advantages over hypodermal injection due to painless and easy self-administration. However, the long epidermal application time required for drug implantation by existing LbL MN strategies (15-90 min) can lead to potential medication noncompliance. Here, we developed a MN platform to shorten the application time in MN therapies based on a synthetic pH-induced charge-invertible polymer poly(2-(diisopropylamino) ethyl methacrylate- b-methacrylic acid) (PDM), requiring only 1 min skin insertion time to implant LbL films in vivo. Following MN-mediated delivery of 0.5 µg model antigen chicken ovalbumin (OVA) in the skin of mice, this system achieved sustained release over 3 days and led to an elevated immune response as demonstrated by significantly higher humoral immunity compared with OVA administration via conventional routes (subcutaneously and intramuscularly). Moreover, in an ex vivo experiment on human skin, we achieved efficient immune activation through MN-delivered LbL films, demonstrated by a rapid uptake of vaccine adjuvants by the antigen presenting cells. These features, rapid administration and the ability to elicit a robust immune response, can potentially enable a broad application of microneedle-based vaccination technologies.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Agujas , Oligodesoxirribonucleótidos/farmacología , Ácidos Polimetacrílicos/síntesis química , Receptor de Muerte Celular Programada 1/inmunología , Piel/efectos de los fármacos , Adyuvantes Inmunológicos/administración & dosificación , Administración Cutánea , Animales , Pollos , Sistemas de Liberación de Medicamentos , Femenino , Citometría de Flujo , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/administración & dosificación , Ovalbúmina/administración & dosificación , Ovalbúmina/inmunología , Ácidos Polimetacrílicos/química , Piel/inmunología , Vacunación
13.
Sci Transl Med ; 10(467)2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30429353

RESUMEN

Important cell populations reside within tissues and are not accessed by traditional blood draws used to monitor the immune system. To address this issue at an essential barrier tissue, the skin, we created a microneedle-based technology for longitudinal sampling of cells and interstitial fluid, enabling minimally invasive parallel monitoring of immune responses. Solid microneedle projections were coated by a cross-linked biocompatible polymer, which swells upon skin insertion, forming a porous matrix for local leukocyte infiltration. By embedding molecular adjuvants and specific antigens encapsulated in nanocapsules within the hydrogel coating, antigen-specific lymphocytes can be enriched in the recovered cell population, allowing for subsequent detailed phenotypic and functional analysis. We demonstrate this approach in mice immunized with a model protein antigen or infected in the skin with vaccinia virus. After vaccination or infection, sampling microneedles allowed tissue-resident memory T cells (TRMs) to be longitudinally monitored in the skin for many months, during which time the antigen-specific T cell population in systemic circulation contracted to low or undetectable counts. Sampling microneedles did not change the immune status of naïve or antigen-exposed animals. We also validated the ability of cell sampling using human skin samples. This approach may be useful in vaccines and immunotherapies to temporally query TRM populations or as a diagnostic platform to sample for biomarkers in chronic inflammatory and autoimmune disorders, allowing information previously accessible only via invasive biopsies to be obtained in a minimally invasive manner from the skin or other mucosal tissues.


Asunto(s)
Líquido Extracelular/metabolismo , Monitorización Inmunológica/métodos , Agujas , Piel/inmunología , Adyuvantes Inmunológicos/farmacología , Alginatos/química , Animales , Antígenos/metabolismo , Humanos , Inmunidad Humoral/efectos de los fármacos , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Ratones Endogámicos C57BL , Nanocápsulas
14.
ACS Macro Lett ; 6(11): 1320-1324, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-35650790

RESUMEN

A broad range of biomaterials coatings and thin film drug delivery systems require a strategy for the immobilization, retention, and release of coatings from surfaces such as patches, inserts, and microneedles under physiological conditions. Here we report a polymer designed to provide a dynamic surface, one that first functions as a platform for electrostatic thin film assembly and releases the film once in an in vivo environment. Atom transfer radical polymerization (ATRP) was used to synthesize this polymer poly(o-nitrobenzyl-methacrylate-co-hydroxyethyl-methacrylate-co-poly(ethylene-glycol)-methacrylate) (PNHP), embedded beneath multilayered polyelectrolyte films. Such a base layer is designed to photochemically pattern negative charge onto a solid substrate, assist deposition of smooth layer-by-layer (LbL) polyelectrolyte in mildly acidic buffers and rapidly dissolve at physiological pH, thus lifting off the LbL films. To explore potential uses in the biomedical field, a lysozyme (Lys)/poly(acrylic acid) (PAA) multilayer film was developed on PNHP-coated silicon wafers to construct prototype antimicrobial shunts. Film thickness was shown to grow exponentially with increasing deposition cycles, and effective drug loading and in vitro release was confirmed by the dose-dependent inhibition of Escherichia coli (E. coli) growth. The efficacy of this approach is further demonstrated in LbL-coated microscale needle arrays ultimately of interest for vaccine applications. Using PNHP as a photoresist, LbL films were confined to the tips of the microneedles, which circumvented drug waste at the patch base. Subsequent confocal images confirmed rapid LbL film implantation of PNHP at microneedle penetration sites on mouse skin. Furthermore, in human skin biopsies, we achieved efficient immune activation demonstrated by a rapid uptake of vaccine adjuvant from microneedle-delivered PNHP LbL film in up to 37% of antigen-presenting cells (APC), providing an unprecedented LbL microneedle platform for human vaccination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA