Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant Physiol ; 174(2): 956-971, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28381499

RESUMEN

The complexity of plant antioxidative systems gives rise to many unresolved questions. One relates to the functional importance of dehydroascorbate reductases (DHARs) in interactions between ascorbate and glutathione. To investigate this issue, we produced a complete set of loss-of-function mutants for the three annotated Arabidopsis (Arabidopsis thaliana) DHARs. The combined loss of DHAR1 and DHAR3 expression decreased extractable activity to very low levels but had little effect on phenotype or ascorbate and glutathione pools in standard conditions. An analysis of the subcellular localization of the DHARs in Arabidopsis lines stably transformed with GFP fusion proteins revealed that DHAR1 and DHAR2 are cytosolic while DHAR3 is chloroplastic, with no evidence for peroxisomal or mitochondrial localizations. When the mutations were introduced into an oxidative stress genetic background (cat2), the dhar1 dhar2 combination decreased glutathione oxidation and inhibited cat2-triggered induction of the salicylic acid pathway. These effects were reversed in cat2 dhar1 dhar2 dhar3 complemented with any of the three DHARs. The data suggest that (1) DHAR can be decreased to negligible levels without marked effects on ascorbate pools, (2) the cytosolic isoforms are particularly important in coupling intracellular hydrogen peroxide metabolism to glutathione oxidation, and (3) DHAR-dependent glutathione oxidation influences redox-driven salicylic acid accumulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Cloroplastos/enzimología , Citosol/enzimología , Estrés Oxidativo , Oxidorreductasas/metabolismo , Ácido Salicílico/metabolismo , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Ácido Ascórbico/metabolismo , Muerte Celular , ADN Bacteriano/genética , Prueba de Complementación Genética , Glutatión/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Mutagénesis Insercional/genética , Mutación/genética , Fenotipo , Proteínas Recombinantes de Fusión/metabolismo , Fracciones Subcelulares/metabolismo
2.
Sci Total Environ ; 946: 174116, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38909817

RESUMEN

Urban trees are often not considered in air-quality models although they can significantly impact the concentrations of pollutants. Gas and particles can deposit on leaf surfaces, lowering their concentrations, but the tree crown aerodynamic effect is antagonist, limiting the dispersion of pollutants in streets. Furthermore, trees emit Biogenic Volatile Organic Compounds (BVOCs) that react with other compounds to form ozone and secondary organic aerosols. This study aims to quantify the impacts of these three tree effects (dry deposition, aerodynamic effect and BVOC emissions) on air quality from the regional to the street scale over Paris city. Each tree effect is added in the model chain CHIMERE/MUNICH/SSH-aerosol. The tree location and characteristics are determined using the Paris tree inventory, combined with allometric equations. The air-quality simulations are performed over June and July 2022. The results show that the aerodynamic tree effect increases the concentrations of gas and particles emitted in streets, such as NOx (+4.6 % on average in streets with trees and up to +37 % for NO2). This effect increases with the tree Leaf Area Index and it is more important in streets with high traffic, suggesting to limit the planting of trees with large crowns on high-traffic streets. The effect of dry deposition of gas and particles on leaves is very limited, reducing the concentrations of O3 concentrations by -0.6 % on average and at most -2.5 %. Tree biogenic emissions largely increase the isoprene and monoterpene concentrations, bringing the simulated concentrations closer to observations. Over the two-week sensitivity analysis, biogenic emissions induce an increase of O3, organic particles and PM2.5 street concentrations by respectively +1.1, +2.4 and + 0.5 % on average over all streets. This concentration increase may reach locally +3.5, +12.3 and + 2.9 % respectively for O3, organic particles and PM2.5, suggesting to prefer the plantation of low-emitting VOC species in cities.

3.
Antioxid Redox Signal ; 30(9): 1238-1268, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30044135

RESUMEN

SIGNIFICANCE: Plant stress involves redox signaling linked to reactive oxygen species such as hydrogen peroxide (H2O2), which can be generated at high rates in photosynthetic cells. The systems that process H2O2 include catalase (CAT) and the ascorbate-glutathione pathway, but interactions between them remain unclear. Modeling can aid interpretation and pinpoint areas for investigation. Recent Advances: Based on emerging data and concepts, we introduce a new experimentally constrained kinetic model to analyze interactions between H2O2, CAT, ascorbate, glutathione, and NADPH. The sensitivity points required for accurate simulation of experimental observations are analyzed, and the implications for H2O2-linked redox signaling are discussed. CRITICAL ISSUES: We discuss several implications of the modeled results, in particular the following. (i) CAT and ascorbate peroxidase can share the load in H2O2 processing even in optimal conditions. (ii) Intracellular H2O2 concentrations more than the low µM range may rarely occur. (iii) Ascorbate redox turnover is largely independent of glutathione until ascorbate peroxidation exceeds a certain value. (iv) NADPH availability may determine glutathione redox status through its influence on monodehydroascorbate reduction. (v) The sensitivity of glutathione status to oxidative stress emphasizes its potential suitability as a sensor of increased H2O2. FUTURE DIRECTIONS: Important future questions include the roles of other antioxidative systems in interacting with CAT and the ascorbate-glutathione pathway as well as the nature and significance of processes that achieve redox exchange between different subcellular compartments. Progress in these areas is likely to be favored by integrating kinetic modeling analyses into experimentally based programs, allowing each approach to inform the other.


Asunto(s)
Ácido Ascórbico/metabolismo , Catalasa/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Modelos Biológicos , NADP/metabolismo , Oxidación-Reducción , Fenómenos Fisiológicos de las Plantas , Transducción de Señal , Estrés Fisiológico
4.
Environ Pollut ; 154(3): 390-403, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18316144

RESUMEN

The ammonia stomatal compensation point of plants is determined by leaf temperature, ammonium concentration ([NH4+]apo) and pH of the apoplastic solution. The later two depend on the adjacent cells metabolism and on leaf inputs and outputs through the xylem and phloem. Until now only empirical models have been designed to model the ammonia stomatal compensation point, except the model of Riedo et al. (2002. Coupling soil-plant-atmosphere exchange of ammonia with ecosystem functioning in grasslands. Ecological Modelling 158, 83-110), which represents the exchanges between the plant's nitrogen pools. The first step to model the ammonia stomatal compensation point is to adequately model [NH4+]apo. This [NH4+]apo has been studied experimentally, but there are currently no process-based quantitative models describing its relation to plant metabolism and environmental conditions. This study summarizes the processes involved in determining the ammonia stomatal compensation point at the leaf scale and qualitatively evaluates the ability of existing whole plant N and C models to include a model for [NH4+]apo.


Asunto(s)
Amoníaco/metabolismo , Productos Agrícolas , Contaminantes Ambientales/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Atmósfera , Pared Celular/metabolismo , Concentración de Iones de Hidrógeno , Modelos Biológicos , Floema/metabolismo , Poaceae/metabolismo , Temperatura , Xilema/metabolismo
5.
Plant Signal Behav ; 12(8): e1356531, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28782990

RESUMEN

Glutathione is a pivotal molecule in oxidative stress, during which it is potentially oxidized by several pathways linked to H2O2 detoxification. We have investigated the response and functional importance of 3 potential routes for glutathione oxidation pathways mediated by glutathione S-transferases (GST), glutaredoxin-dependent peroxiredoxins (PRXII), and dehydroascorbate reductases (DHAR) in Arabidopsis during oxidative stress. Loss-of-function gstU8, gstU24, gstF8, prxIIE and prxIIF mutants as well as double gstU8 gstU24, gstU8 gstF8, gstU24 gstF8, prxIIE prxIIF mutants were obtained. No mutant lines showed marked changes in their phenotype and glutathione profiles in comparison to the wild-type plants in either optimal conditions or oxidative stress triggered by catalase inhibition. By contrast, multiple loss of DHAR functions markedly decreased glutathione oxidation triggered by catalase deficiency. To assess whether this effect was mediated directly by loss of DHAR enzyme activity, or more indirectly by upregulation of other enzymes involved in glutathione and ascorbate recycling, we measured expression of glutathione reductase (GR) and expression and activity of monodehydroascorbate reductases (MDHAR). No evidence was obtained that either GRs or MDHARs were upregulated in plants lacking DHAR function. Hence, interplay between different DHARs appears to be necessary to couple ascorbate and glutathione pools and to allow glutathione-related signaling during enhanced H2O2 metabolism.


Asunto(s)
Arabidopsis/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/toxicidad , Espacio Intracelular/metabolismo , Oxidorreductasas/metabolismo , Amitrol (Herbicida)/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Oxidantes , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Fenotipo
6.
Front Plant Sci ; 4: 477, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24324478

RESUMEN

Glutathione is a small redox-active molecule existing in two main stable forms: the thiol (GSH) and the disulphide (GSSG). In plants growing in optimal conditions, the GSH:GSSG ratio is high in most cell compartments. Challenging environmental conditions are known to alter this ratio, notably by inducing the accumulation of GSSG, an effect that may be influential in the perception or transduction of stress signals. Despite the potential importance of glutathione status in redox signaling, the reactions responsible for the oxidation of GSH to GSSG have not been clearly identified. Most attention has focused on the ascorbate-glutathione pathway, but several other candidate pathways may couple the availability of oxidants such as H2O2 to changes in glutathione and thus impact on signaling pathways through regulation of protein thiol-disulfide status. We provide an overview of the main candidate pathways and discuss the available biochemical, transcriptomic, and genetic evidence relating to each. Our analysis emphasizes how much is still to be elucidated on this question, which is likely important for a full understanding of how stress-related redox regulation might impinge on phytohormone-related and other signaling pathways in plants.

7.
Plant Cell Environ ; 30(9): 1191-204, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17661755

RESUMEN

C(4)-type photosynthesis is known to vary with growth and measurement temperatures. In an attempt to quantify its variability with measurement temperature, the photosynthetic parameters - the maximum catalytic rate of the enzyme ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) (V(cmax)), the maximum catalytic rate of the enzyme phosphoenolpyruvate carboxylase (PEPC) (V(pmax)) and the maximum electron transport rate (J(max)) - were examined. Maize plants were grown in climatic-controlled phytotrons, and the curves of net photosynthesis (A(n)) versus intercellular air space CO(2) concentrations (C(i)), and A(n) versus photosynthetic photon flux density (PPFD) were determined over a temperature range of 15-40 degrees C. Values of V(cmax), V(pmax) and J(max) were computed by inversion of the von Caemmerer & Furbank photosynthesis model. Values of V(pmax) and J(max) obtained at 25 degrees C conform to values found in the literature. Parameters for an Arrhenius equation that best fits the calculated values of V(cmax), V(pmax) and J(max) are then proposed. These parameters should be further tested with C(4) plants for validation. Other model key parameters such as the mesophyll cell conductance to CO(2) (g(i)), the bundle sheath cells conductance to CO(2) (g(bs)) and Michaelis-Menten constants for CO(2) and O(2) (K(c), K(p) and K(o)) also vary with temperature and should be better parameterized.


Asunto(s)
Fosfoenolpiruvato Carboxilasa/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Temperatura , Transporte de Electrón , Cinética , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA