Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 60(4): 571-83, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26481663

RESUMEN

Phosphoenolpyruvate carboxykinase (PEPCK) is well known for its role in gluconeogenesis. However, PEPCK is also a key regulator of TCA cycle flux. The TCA cycle integrates glucose, amino acid, and lipid metabolism depending on cellular needs. In addition, biosynthetic pathways crucial to tumor growth require the TCA cycle for the processing of glucose and glutamine derived carbons. We show here an unexpected role for PEPCK in promoting cancer cell proliferation in vitro and in vivo by increasing glucose and glutamine utilization toward anabolic metabolism. Unexpectedly, PEPCK also increased the synthesis of ribose from non-carbohydrate sources, such as glutamine, a phenomenon not previously described. Finally, we show that the effects of PEPCK on glucose metabolism and cell proliferation are in part mediated via activation of mTORC1. Taken together, these data demonstrate a role for PEPCK that links metabolic flux and anabolic pathways to cancer cell proliferation.


Asunto(s)
Neoplasias Colorrectales/patología , Glucosa/metabolismo , Glutamina/metabolismo , Complejos Multiproteicos/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Glucólisis , Células HT29 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Trasplante de Neoplasias
2.
J Biol Chem ; 286(48): 41626-41635, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21979952

RESUMEN

The thiazolidedione (TZD) class of drugs is clinically approved for the treatment of type 2 diabetes. The therapeutic actions of TZDs are mediated via activation of peroxisome proliferator-activated receptor γ (PPARγ). Despite their widespread use, concern exists regarding the safety of currently used TZDs. This has prompted the development of selective PPARγ modulators (SPPARMs), compounds that promote glucose homeostasis but with reduced side effects due to partial PPARγ agonism. However, this also results in partial agonism with respect to PPARγ target genes promoting glucose homeostasis. Using a gene expression-based screening approach we identified N-acetylfarnesylcysteine (AFC) as both a full and partial agonist depending on the PPARγ target gene (differential SPPARM). AFC activated PPARγ as effectively as rosiglitazone with regard to Adrp, Angptl4, and AdipoQ, but was a partial agonist of aP2, a PPARγ target gene associated with increased adiposity. Induction of adipogenesis by AFC was also attenuated compared with rosiglitazone. Reporter, ligand binding assays, and dynamic modeling demonstrate that AFC binds and activates PPARγ in a unique manner compared with other PPARγ ligands. Importantly, treatment of mice with AFC improved glucose tolerance similar to rosiglitazone, but AFC did not promote weight gain to the same extent. Finally, AFC had effects on adipose tissue remodeling similar to those of rosiglitazone and had enhanced antiinflammatory effects. In conclusion, we describe a new approach for the identification of differential SPPARMs and have identified AFC as a novel class of PPARγ ligand with both full and partial agonist activity in vitro and in vivo.


Asunto(s)
Acetilcisteína/análogos & derivados , Cisteína/análogos & derivados , Cisteína/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/farmacología , PPAR gamma/agonistas , Células 3T3-L1 , Acetilcisteína/química , Acetilcisteína/farmacología , Animales , Cisteína/química , Homeostasis/efectos de los fármacos , Hipoglucemiantes/química , Ligandos , Ratones , Ratones Noqueados , PPAR gamma/metabolismo , Unión Proteica , Rosiglitazona , Tiazolidinedionas/farmacología
3.
Cancer Prev Res (Phila) ; 5(4): 544-52, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22467080

RESUMEN

A number of factors have been identified that increase the risk of hepatocellular carcinoma (HCC). Recently it has become appreciated that type II diabetes increases the risk of developing HCC. This represents a patient population that can be identified and targeted for cancer prevention. The biguanide metformin is a first-line therapy for the treatment of type II diabetes in which it exerts its effects primarily on the liver. A role of metformin in HCC is suggested by studies linking metformin intake for control of diabetes with a reduced risk of HCC. Although a number of preclinical studies show the anticancer properties of metformin in a number of tissues, no studies have directly examined the effect of metformin on preventing carcinogenesis in the liver, one of its main sites of action. We show in these studies that metformin protected mice against chemically induced liver tumors. Interestingly, metformin did not increase AMPK activation, often shown to be a metformin target. Rather metformin decreased the expression of several lipogenic enzymes and lipogenesis. In addition, restoring lipogenic gene expression by ectopic expression of the lipogenic transcription factor SREBP1c rescues metformin-mediated growth inhibition. This mechanism of action suggests that metformin may also be useful for patients with other disorders associated with HCC in which increased lipid synthesis is observed. As a whole these studies show that metformin prevents HCC and that metformin should be evaluated as a preventive agent for HCC in readily identifiable at-risk patients.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hipoglucemiantes/farmacología , Hígado/metabolismo , Metformina/farmacología , Neoplasias/prevención & control , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Lípidos/química , Lipogénesis , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Ratas , Triglicéridos/metabolismo
4.
Cancer Res ; 71(21): 6888-98, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21914785

RESUMEN

Despite the role of aerobic glycolysis in cancer, recent studies highlight the importance of the mitochondria and biosynthetic pathways as well. PPARγ coactivator 1α (PGC1α) is a key transcriptional regulator of several metabolic pathways including oxidative metabolism and lipogenesis. Initial studies suggested that PGC1α expression is reduced in tumors compared with adjacent normal tissue. Paradoxically, other studies show that PGC1α is associated with cancer cell proliferation. Therefore, the role of PGC1α in cancer and especially carcinogenesis is unclear. Using Pgc1α(-/-) and Pgc1α(+/+) mice, we show that loss of PGC1α protects mice from azoxymethane-induced colon carcinogenesis. Similarly, diethylnitrosamine-induced liver carcinogenesis is reduced in Pgc1α(-/-) mice as compared with Pgc1α(+/+) mice. Xenograft studies using gain and loss of PGC1α expression showed that PGC1α also promotes tumor growth. Interestingly, while PGC1α induced oxidative phosphorylation and tricarboxylic acid cycle gene expression, we also observed an increase in the expression of two genes required for de novo fatty acid synthesis, ACC and FASN. In addition, SLC25A1 and ACLY, which are required for the conversion of glucose into acetyl-CoA for fatty acid synthesis, were also increased by PGC1α, thus linking the oxidative and lipogenic functions of PGC1α. Indeed, using stable (13)C isotope tracer analysis, we show that PGC1α increased de novo lipogenesis. Importantly, inhibition of fatty acid synthesis blunted these progrowth effects of PGC1α. In conclusion, these studies show for the first time that loss of PGC1α protects against carcinogenesis and that PGC1α coordinately regulates mitochondrial and fatty acid metabolism to promote tumor growth.


Asunto(s)
Neoplasias del Colon/prevención & control , Regulación Neoplásica de la Expresión Génica/genética , Lipogénesis/genética , Neoplasias Hepáticas Experimentales/prevención & control , Transactivadores/fisiología , Acetil-CoA Carboxilasa/biosíntesis , Acetil-CoA Carboxilasa/genética , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral/metabolismo , Línea Celular Tumoral/trasplante , Transformación Celular Neoplásica/genética , Ciclo del Ácido Cítrico/genética , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Ácido Graso Sintasas/biosíntesis , Ácido Graso Sintasas/genética , Ácidos Grasos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas Experimentales/inducido químicamente , Ratones , Ratones Noqueados , Ratones SCID , Mitocondrias/metabolismo , Proteínas Mitocondriales , Trasplante de Neoplasias , Transportadores de Anión Orgánico/biosíntesis , Transportadores de Anión Orgánico/genética , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transactivadores/deficiencia , Transactivadores/genética , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA