Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Biol ; 21(1): e3001983, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716323

RESUMEN

During a microbial infection, responding CD8+ T cells give rise to effector cells that provide acute host defense and memory cells that provide sustained protection. An alternative outcome is exhaustion, a state of T cell dysfunction that occurs in the context of chronic infections and cancer. Although it is evident that exhausted CD8+ T (TEX) cells are phenotypically and molecularly distinct from effector and memory CD8+ T cells, the factors regulating the earliest events in the differentiation process of TEX cells remain incompletely understood. Here, we performed single-cell RNA-sequencing and single-cell ATAC-sequencing of CD8+ T cells responding to LCMV-Armstrong (LCMV-Arm) or LCMV-Clone 13 (LCMV-Cl13), which result in acute or chronic infections, respectively. Compared to CD8+ T cells that had undergone their first division in response to LCMV-Arm (Div1ARM) cells, CD8+ T cells that had undergone their first division in response to LCMV-Cl13 (Div1CL13) expressed higher levels of genes encoding transcription factors previously associated with exhaustion, along with higher levels of Ezh2, the catalytic component of the Polycomb Repressive Complex 2 (PRC2) complex, which mediates epigenetic silencing. Modulation of Ezh2 resulted in altered expression of exhaustion-associated molecules by CD8+ T cells responding to LCMV-Cl13, though the specific cellular and infectious contexts, rather than simply the level of Ezh2 expression, likely determine the eventual outcome. Taken together, these findings suggest that the differentiation paths of CD8+ T cells responding to acute versus chronic infections may diverge earlier than previously appreciated.


Asunto(s)
Coriomeningitis Linfocítica , Humanos , Animales , Ratones , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/metabolismo , Infección Persistente , Linfocitos T CD8-positivos/metabolismo , Virus de la Coriomeningitis Linfocítica , Epigénesis Genética , Ratones Endogámicos C57BL
2.
J Immunol ; 211(2): 241-251, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37265401

RESUMEN

The RNA-binding protein DEAD-box protein 5 (DDX5) is a polyfunctional regulator of gene expression, but its role in CD8+ T cell biology has not been extensively investigated. In this study, we demonstrate that deletion of DDX5 in murine CD8+ T cells reduced the differentiation of terminal effector, effector memory T, and terminal effector memory cells while increasing the generation of central memory T cells, whereas forced expression of DDX5 elicited the opposite phenotype. DDX5-deficient CD8+ T cells exhibited increased expression of genes that promote central memory T cell differentiation, including Tcf7 and Eomes. Taken together, these findings reveal a role for DDX5 in regulating the differentiation of effector and memory CD8+ T cell subsets in response to microbial infection.


Asunto(s)
Linfocitos T CD8-positivos , Subgrupos de Linfocitos T , Animales , Ratones , Diferenciación Celular , Memoria Inmunológica , Activación de Linfocitos , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
3.
J Immunol ; 200(12): 4012-4023, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29703862

RESUMEN

Maintenance of the regulatory T (Treg) cell pool is essential for peripheral tolerance and prevention of autoimmunity. Integrins, heterodimeric transmembrane proteins consisting of α and ß subunits that mediate cell-to-cell and cell-to-extracellular matrix interactions, play an important role in facilitating Treg cell contact-mediated suppression. In this article, we show that integrin activation plays an essential, previously unappreciated role in maintaining murine Treg cell function. Treg cell-specific loss of talin, a ß integrin-binding protein, or expression of talin(L325R), a mutant that selectively abrogates integrin activation, resulted in lethal systemic autoimmunity. This dysfunction could be attributed, in part, to a global dysregulation of the Treg cell transcriptome. Activation of integrin α4ß1 led to increased suppressive capacity of the Treg cell pool, suggesting that modulating integrin activation on Treg cells may be a useful therapeutic strategy for autoimmune and inflammatory disorders. Taken together, these results reveal a critical role for integrin-mediated signals in controlling peripheral tolerance by virtue of maintaining Treg cell function.


Asunto(s)
Integrinas/inmunología , Tolerancia Periférica/inmunología , Linfocitos T Reguladores/inmunología , Animales , Autoinmunidad/inmunología , Inflamación/inmunología , Ratones , Talina/inmunología , Transcriptoma/inmunología
4.
J Exp Med ; 219(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35593887

RESUMEN

During an immune response to microbial infection, CD8+ T cells give rise to short-lived effector cells and memory cells that provide sustained protection. Although the transcriptional programs regulating CD8+ T cell differentiation have been extensively characterized, the role of long noncoding RNAs (lncRNAs) in this process remains poorly understood. Using a functional genetic knockdown screen, we identified the lncRNA Malat1 as a regulator of terminal effector cells and the terminal effector memory (t-TEM) circulating memory subset. Evaluation of chromatin-enriched lncRNAs revealed that Malat1 grouped with trans lncRNAs that exhibit increased RNA interactions at gene promoters and gene bodies. Moreover, we observed that Malat1 was associated with increased H3K27me3 deposition at a number of memory cell-associated genes through a direct interaction with Ezh2, thereby promoting terminal effector and t-TEM cell differentiation. Our findings suggest an important functional role of Malat1 in regulating CD8+ T cell differentiation and broaden the knowledge base of lncRNAs in CD8+ T cell biology.


Asunto(s)
ARN Largo no Codificante , Linfocitos T CD8-positivos , Diferenciación Celular/genética , Represión Epigenética , Activación de Linfocitos , ARN Largo no Codificante/genética
5.
Clin Transl Gastroenterol ; 13(4): e00484, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35347100

RESUMEN

Immune-modulating medications for inflammatory bowel diseases (IBDs) have been associated with suboptimal vaccine responses. There are conflicting data with SARS-CoV-2 vaccination. We therefore assessed SARS-CoV-2 vaccine immunogenicity at 2 weeks after second mRNA vaccination in 29 patients with IBD compared with 12 normal healthy donors. We observed reduced humoral immunity in patients with IBD on infliximab. However, we observed no difference in humoral and cell-mediated immunity in patients with IBD on infliximab with a thiopurine or vedolizumab compared with normal healthy donors. This is the first study to demonstrate comparable cell-mediated immunity with SARS-CoV-2 vaccination in patients with IBD treated with different immune-modulating medications.


Asunto(s)
COVID-19 , Enfermedades Inflamatorias del Intestino , COVID-19/prevención & control , Vacunas contra la COVID-19 , Enfermedad Crónica , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Infliximab/farmacología , Infliximab/uso terapéutico , SARS-CoV-2
6.
Sci Immunol ; 5(47)2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32414833

RESUMEN

During an immune response to microbial infection, CD8+ T cells give rise to distinct classes of cellular progeny that coordinately mediate clearance of the pathogen and provide long-lasting protection against reinfection, including a subset of noncirculating tissue-resident memory (TRM) cells that mediate potent protection within nonlymphoid tissues. Here, we used single-cell RNA sequencing to examine the gene expression patterns of individual CD8+ T cells in the spleen and small intestine intraepithelial lymphocyte (siIEL) compartment throughout the course of their differentiation in response to viral infection. These analyses revealed previously unknown transcriptional heterogeneity within the siIEL CD8+ T cell population at several stages of differentiation, representing functionally distinct TRM cell subsets and a subset of TRM cell precursors within the tissue early in infection. Together, these findings may inform strategies to optimize CD8+ T cell responses to protect against microbial infection and cancer.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Animales , Linfocitos T CD8-positivos/citología , Diferenciación Celular/inmunología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
7.
Sci Immunol ; 5(50)2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32826341

RESUMEN

Inflammatory bowel disease (IBD) encompasses a spectrum of gastrointestinal disorders driven by dysregulated immune responses against gut microbiota. We integrated single-cell RNA and antigen receptor sequencing to elucidate key components, cellular states, and clonal relationships of the peripheral and gastrointestinal mucosal immune systems in health and ulcerative colitis (UC). UC was associated with an increase in IgG1+ plasma cells in colonic tissue, increased colonic regulatory T cells characterized by elevated expression of the transcription factor ZEB2, and an enrichment of a γδ T cell subset in the peripheral blood. Moreover, we observed heterogeneity in CD8+ tissue-resident memory T (TRM) cells in colonic tissue, with four transcriptionally distinct states of differentiation observed across health and disease. In the setting of UC, there was a marked shift of clonally related CD8+ TRM cells toward an inflammatory state, mediated, in part, by increased expression of the T-box transcription factor Eomesodermin. Together, these results provide a detailed atlas of transcriptional changes occurring in adaptive immune cells in the context of UC and suggest a role for CD8+ TRM cells in IBD.


Asunto(s)
Colitis Ulcerosa/inmunología , Linfocitos Intraepiteliales/inmunología , Células T de Memoria/inmunología , Linfocitos T Reguladores/inmunología , Inmunidad Adaptativa , Animales , Colon/inmunología , Humanos , Inmunoglobulina G/inmunología , Masculino , Ratones Transgénicos , Análisis de la Célula Individual
8.
Mol Cancer Res ; 16(7): 1172-1184, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29724812

RESUMEN

Epithelial-mesenchymal transition (EMT) is a conserved cellular plasticity program that is reactivated in carcinoma cells and drives metastasis. Although EMT is well studied its regulatory mechanisms remain unclear. Therefore, to identify novel regulators of EMT, a data mining approach was taken using published microarray data and a group of deubiquitinases (DUB) were found to be upregulated in cells that have undergone EMT. Here, it is demonstrated that one DUB, ubiquitin-specific peptidase 11 (USP11), enhances TGFß-induced EMT and self-renewal in immortalized human mammary epithelial cells. Furthermore, modulating USP11 expression in human breast cancer cells altered the migratory capacity in vitro and metastasis in vivo Moreover, elevated USP11 expression in human breast cancer patient clinical specimens correlated with decreased survival. Mechanistically, modulating USP11 expression altered the stability of TGFß receptor type II (TGFBR2) and TGFß downstream signaling in human breast cancer cells. Together, these data suggest that deubiquitination of TGFBR2 by USP11 effectively spares TGFBR2 from proteasomal degradation to promote EMT and metastasis.Implications: USP11 regulates TGFß-induced epithelial-mesenchymal plasticity and human breast cancer metastasis and may be a potential therapeutic target for breast cancer. Mol Cancer Res; 16(7); 1172-84. ©2018 AACR.


Asunto(s)
Neoplasias de la Mama/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Tioléster Hidrolasas/genética , Factor de Crecimiento Transformador beta/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Plasticidad de la Célula/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis de la Neoplasia , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA