Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 39(50): 9885-9899, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31672790

RESUMEN

Despite dynamic inputs, neuronal circuits maintain relatively stable firing rates over long periods. This maintenance of firing rate, or firing rate homeostasis, is likely mediated by homeostatic mechanisms such as synaptic scaling and regulation of intrinsic excitability. Because some of these homeostatic mechanisms depend on transcription of activity-regulated genes, including Arc and Homer1a, we hypothesized that activity-regulated transcription would be required for firing rate homeostasis. Surprisingly, however, we found that cultured mouse cortical neurons from both sexes grown on multi-electrode arrays homeostatically adapt their firing rates to persistent pharmacological stimulation even when activity-regulated transcription is disrupted. Specifically, we observed firing rate homeostasis in Arc knock-out neurons, as well as knock-out neurons lacking the activity-regulated transcription factors AP1 and SRF. Firing rate homeostasis also occurred normally during acute pharmacological blockade of transcription. Thus, firing rate homeostasis in response to increased neuronal activity can occur in the absence of neuronal-activity-regulated transcription.SIGNIFICANCE STATEMENT Neuronal circuits maintain relatively stable firing rates even in the face of dynamic circuit inputs. Understanding the molecular mechanisms that enable this firing rate homeostasis could potentially provide insight into neuronal diseases that present with an imbalance of excitation and inhibition. It has long been proposed that activity-regulated transcription could underlie firing rate homeostasis because activity-regulated genes turn on when neurons are above their target firing rates and include many genes that could regulate firing rate. Surprisingly, despite this prediction, we found that cortical neurons can undergo firing rate homeostasis in the absence of activity-regulated transcription, indicating that firing rate homeostasis can be controlled by non-transcriptional mechanisms.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Cerebral/fisiología , Homeostasis/fisiología , Neuronas/fisiología , Transcripción Genética , Animales , Células Cultivadas , Proteínas del Citoesqueleto/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/fisiología , Sinapsis/fisiología
2.
Development ; 141(22): 4343-53, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25344075

RESUMEN

In the developing neocortex, neural precursor cells (NPCs) sequentially generate various neuronal subtypes in a defined order. Although the precise timing of the NPC fate switches is essential for determining the number of neurons of each subtype and for precisely generating the cortical layer structure, the molecular mechanisms underlying these switches are largely unknown. Here, we show that epigenetic regulation through Ring1B, an essential component of polycomb group (PcG) complex proteins, plays a key role in terminating NPC-mediated production of subcerebral projection neurons (SCPNs). The level of histone H3 residue K27 trimethylation at and Ring1B binding to the promoter of Fezf2, a fate determinant of SCPNs, increased in NPCs as Fezf2 expression decreased. Moreover, deletion of Ring1B in NPCs, but not in postmitotic neurons, prolonged the expression of Fezf2 and the generation of SCPNs that were positive for CTIP2. These results indicate that Ring1B mediates the timed termination of Fezf2 expression and thereby regulates the number of SCPNs.


Asunto(s)
Epigénesis Genética/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neocórtex/embriología , Neurogénesis/fisiología , Neuronas/fisiología , Complejo Represivo Polycomb 1/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Bromodesoxiuridina , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica/genética , Inmunohistoquímica , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Neuronas/citología , ARN Interferente Pequeño/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Supresoras de Tumor/metabolismo
3.
Curr Opin Neurobiol ; 59: 87-94, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31163285

RESUMEN

Neurons transcribe different genes in response to different extracellular stimuli, and these genes regulate neuronal plasticity. Thus, understanding how different stimuli regulate different stimulus-dependent gene modules would deepen our understanding of plasticity. To systematically dissect the coupling between stimulation and transcription, we propose creating a 'stimulation-transcription coupling map' that describes the transcription response to each possible extracellular stimulus. While we are currently far from having a complete map, recent genomic experiments have begun to facilitate its creation. Here, we describe the current state of the stimulation-transcription coupling map as well as the transcriptional regulation that enables this coupling.


Asunto(s)
Regulación de la Expresión Génica , Neuronas , Plasticidad Neuronal
4.
eNeuro ; 6(5)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31444226

RESUMEN

Optogenetics is widely used to control diverse cellular functions with light, requiring experimenters to expose cells to bright light. Because extended exposure to visible light can be toxic to cells, it is important to characterize the effects of light stimulation on cellular function in the absence of optogenetic proteins. Here we exposed mouse cortical cultures with no exogenous optogenetic proteins to several hours of flashing blue, red, or green light. We found that exposing these cultures to as short as 1 h of blue light, but not red or green light, results in an increase in the expression of neuronal activity-regulated genes. Our findings suggest that blue light stimulation is ill suited to long-term optogenetic experiments, especially those that measure transcription, and they emphasize the importance of performing light-only control experiments in samples without optogenetic proteins.


Asunto(s)
Channelrhodopsins/biosíntesis , Channelrhodopsins/efectos de la radiación , Luz , Neuronas/efectos de la radiación , Optogenética/métodos , Estimulación Luminosa/métodos , Animales , Células Cultivadas , Channelrhodopsins/genética , Femenino , Expresión Génica , Masculino , Ratones , Neuronas/metabolismo
5.
Neuron ; 98(3): 530-546.e11, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29681534

RESUMEN

A vast number of different neuronal activity patterns could each induce a different set of activity-regulated genes. Mapping this coupling between activity pattern and gene induction would allow inference of a neuron's activity-pattern history from its gene expression and improve our understanding of activity-pattern-dependent synaptic plasticity. In genome-scale experiments comparing brief and sustained activity patterns, we reveal that activity-duration history can be inferred from gene expression profiles. Brief activity selectively induces a small subset of the activity-regulated gene program that corresponds to the first of three temporal waves of genes induced by sustained activity. Induction of these first-wave genes is mechanistically distinct from that of the later waves because it requires MAPK/ERK signaling but does not require de novo translation. Thus, the same mechanisms that establish the multi-wave temporal structure of gene induction also enable different gene sets to be induced by different activity durations.


Asunto(s)
Corteza Cerebral/fisiología , Regulación de la Expresión Génica/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Neuronas/fisiología , Animales , Células Cultivadas , Corteza Cerebral/citología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Estimulación Luminosa/métodos , Ratas , Ratas Sprague-Dawley
6.
Curr Opin Neurobiol ; 23(6): 957-64, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23973158

RESUMEN

During mammalian CNS development, when the neural precursor cells commit to the neuronal fate they must delaminate and migrate toward the pial surface in order to reach the appropriate final location. Thus, the coordination of delamination and fate commitment is important in creating the correct structure. Although previous studies have proposed that spindle orientation during mitosis plays a role in both delamination and fate commitment, thus coordinating these events, subsequent studies have challenged this model. Recent work has identified several transcriptional mechanisms associated with neurogenesis that inhibit cell adhesion of newborn neurons and intermediate neuronal progenitors, thereby triggering delamination and linking it with fate commitment.


Asunto(s)
Diferenciación Celular/genética , Movimiento Celular/genética , Células-Madre Neurales/citología , Neurogénesis/genética , Neuronas/citología , Transcripción Genética , Animales , Adhesión Celular/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA