Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biol Chem ; 401(6-7): 835-853, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32142477

RESUMEN

The respiratory pathway of mitochondria is composed of four electron transfer complexes and the ATP synthase. In this article, we review evidence from studies of Saccharomyces cerevisiae that both ATP synthase and cytochrome oxidase (COX) are assembled from independent modules that correspond to structurally and functionally identifiable components of each complex. Biogenesis of the respiratory chain requires a coordinate and balanced expression of gene products that become partner subunits of the same complex, but are encoded in the two physically separated genomes. Current evidence indicates that synthesis of two key mitochondrial encoded subunits of ATP synthase is regulated by the F1 module. Expression of COX1 that codes for a subunit of the COX catalytic core is also regulated by a mechanism that restricts synthesis of this subunit to the availability of a nuclear-encoded translational activator. The respiratory chain must maintain a fixed stoichiometry of the component enzyme complexes during cell growth. We propose that high-molecular-weight complexes composed of Cox6, a subunit of COX, and of the Atp9 subunit of ATP synthase play a key role in establishing the ratio of the two complexes during their assembly.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
J Biol Chem ; 293(43): 16899-16911, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30224355

RESUMEN

Cytochrome oxidase (COX) is a hetero-oligomeric complex of the mitochondrial inner membrane that reduces molecular oxygen to water, a reaction coupled to proton transfer from the mitochondrial matrix to the intermembrane space. In the yeast Saccharomyces cerevisiae, COX is composed of 11-13 different polypeptide subunits. Here, using pulse labeling of mitochondrial gene products in isolated yeast mitochondria, combined with purification of tagged COX subunits and ancillary factors, we studied the Cox2p assembly intermediates. Analysis of radiolabeled Cox2p obtained in pulldown assays by native gel electrophoresis revealed the existence of several assembly intermediates, the largest of which had an estimated mass of 450-550 kDa. None of the other known subunits of COX were present in these Cox2p intermediates. This was also true for the several ancillary factors having still undefined functions in COX assembly. In agreement with earlier evidence, Cox18p and Cox20p, previously shown to be involved in processing and in membrane insertion of the Cox2p precursor, were found to be associated with the two largest Cox2p intermediates. A small fraction of the Cox2p module contained Sco1p and Coa6p, which have been implicated in metalation of the binuclear copper site on this subunit. Our results indicate that following its insertion into the mitochondrial inner membrane, Cox2p assembles as a stand-alone protein with the compositionally more complex Cox1p and Cox3p modules.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejo IV de Transporte de Electrones/genética , Mutación , Subunidades de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
3.
J Biol Chem ; 292(39): 16277-16283, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28821616

RESUMEN

Mitochondrial cytochrome oxidase (COX) catalyzes the last step in the respiratory pathway. In the yeast Saccharomyces cerevisiae, this inner membrane complex is composed of 11 protein subunits. Expression of COX is assisted by some two dozen ancillary proteins that intercede at different stages of the assembly pathway. One such protein, Cox16p, encoded by COX16, was shown to be essential for the activity and assembly of COX. The function of Cox16p, however, has not been determined. We present evidence that Cox16p is present in Cox1p assembly intermediates and in COX. This is based on the finding that Cox16p, tagged with a dual polyhistidine and protein C tag, co-immunopurified with Cox1p assembly intermediates. The pulldown assays also indicated the presence of Cox16p in mature COX and in supercomplexes consisting of COX and the bc1 complex. From the Western signal strengths, Cox16p appears to be substoichiometric with Cox1p and Cox4p, which could indicate that Cox16p is only present in a fraction of COX. In conclusion, our results indicate that Cox16p is a constituent of several Cox1p assembly intermediates and of COX.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Electroforesis en Gel de Poliacrilamida , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Peso Molecular , Mutación , Electroforesis en Gel de Poliacrilamida Nativa , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Homología de Secuencia
4.
Am J Hum Genet ; 93(2): 384-9, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23910460

RESUMEN

Many individuals with abnormalities of mitochondrial respiratory chain complex III remain genetically undefined. Here, we report mutations (c.288G>T [p.Trp96Cys] and c.643C>T [p.Leu215Phe]) in CYC1, encoding the cytochrome c1 subunit of complex III, in two unrelated children presenting with recurrent episodes of ketoacidosis and insulin-responsive hyperglycemia. Cytochrome c1, the heme-containing component of complex III, mediates the transfer of electrons from the Rieske iron-sulfur protein to cytochrome c. Cytochrome c1 is present at reduced levels in the skeletal muscle and skin fibroblasts of affected individuals. Moreover, studies on yeast mutants and affected individuals' fibroblasts have shown that exogenous expression of wild-type CYC1 rescues complex III activity, demonstrating the deleterious effect of each mutation on cytochrome c1 stability and complex III activity.


Asunto(s)
Citocromos c1/genética , Citocromos c/genética , Hiperglucemia/genética , Cetosis/genética , Mutación , Subunidades de Proteína/genética , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Preescolar , Consanguinidad , Citocromos c/metabolismo , Citocromos c1/metabolismo , Transporte de Electrón , Femenino , Fibroblastos/enzimología , Fibroblastos/patología , Prueba de Complementación Genética , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/enzimología , Hiperglucemia/fisiopatología , Insulina/farmacología , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Cetosis/tratamiento farmacológico , Cetosis/enzimología , Cetosis/fisiopatología , Masculino , Mitocondrias/enzimología , Mitocondrias/genética , Modelos Moleculares , Datos de Secuencia Molecular , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Piel/enzimología , Piel/patología
5.
Clin Sci (Lond) ; 130(6): 393-407, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26846578

RESUMEN

As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance of studying different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/genética , Animales , Células Cultivadas , Deficiencia de Citocromo-c Oxidasa/terapia , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Estructura Molecular
6.
J Biol Chem ; 289(45): 31605-16, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25253699

RESUMEN

The Atp9p ring is one of several assembly modules of yeast mitochondrial ATP synthase. The ring, composed of 10 copies of Atp9p, is part of the rotor that couples proton translocation to synthesis or hydrolysis of ATP. We present evidence that before its assembly with other ATP synthase modules, most of Atp9p is present in at least three complexes with masses of 200-400 kDa that co-immunopurify with Cox6p. Pulse-labeling analysis disclosed a time-dependent reduction of radiolabeled Atp9p in the complexes and an increase of Atp9p in the ring form of wild type yeast and of mss51, pet111, and pet494 mutants lacking Cox1p, Cox2p, and Cox3p, respectively. Ring formation was not significantly different from wild type in an mss51 or atp10 mutant. The atp10 mutation blocks the interaction of the Atp9p ring with other modules of the ATP synthase. In contrast, ring formation was reduced in a cox6 mutant, consistent with a role of Cox6p in oligomerization of Atp9p. Cox6p involvement in ATP synthase assembly is also supported by studies showing that ring formation in cells adapting from fermentative to aerobic growth was less efficient in mitochondria of the cox6 mutant than the parental respiratory-competent strain or a cox4 mutant. We speculate that the constitutive and Cox6p-independent rate of Atp9p oligomerization may be sufficient to produce the level of ATP synthase needed for maintaining a membrane potential but limiting for optimal oxidative phosphorylation.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfato/metabolismo , Aerobiosis , ADN Mitocondrial/metabolismo , Regulación Enzimológica de la Expresión Génica , Genotipo , Glucosa/metabolismo , Potenciales de la Membrana , Mitocondrias/enzimología , Mutación , Fosforilación Oxidativa , Oxígeno/metabolismo , Fosforilación
7.
EMBO J ; 30(5): 920-30, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21266956

RESUMEN

The mitochondrial ATP synthase (F(1)-F(0) complex) of Saccharomces cerevisiae is a composite of different structural and functional units that jointly couple ATP synthesis and hydrolysis to proton transfer across the inner membrane. In organello, pulse labelling and pulse-chase experiments have enabled us to track the mitochondrially encoded Atp6p, Atp8p and Atp9p subunits of F(0) and to identify different assembly intermediates into which they are assimilated. Surprisingly, these core subunits of F(0) segregated into two different assembly intermediates one of which is composed of Atp6p, Atp8p, at least two stator subunits, and the Atp10p chaperone while the second consists of the F(1) ATPase and Atp9p ring. These studies show that assembly of the ATP synthase is not a single linear process, as previously thought, but rather involves two separate but coordinately regulated pathways that converge at the end stage.


Asunto(s)
ADN Mitocondrial/metabolismo , Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , ATPasas de Translocación de Protón/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Mitocondrial/genética , Immunoblotting , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , Chaperonas Moleculares , Reacción en Cadena de la Polimerasa , Subunidades de Proteína , ATPasas de Translocación de Protón/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
8.
J Biol Chem ; 288(37): 26546-56, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23897805

RESUMEN

Mitochondrial-encoded Cox1p, one of the three core subunits of yeast cytochrome oxidase (COX), was previously shown to associate with regulatory proteins and nuclear-encoded subunits into five high molecular weight complexes that were proposed to constitute the pathway for biogenesis of the Cox1p assembly module. One of the intermediates (D5) was inferred, but not directly shown to exist. In the present study mitochondria of strains expressing C-terminal-tagged subunits of COX that had not been looked at previously were pulse-labeled and analyzed for the presence of newly translated Cox1p in the immunoprecipitates. These studies revealed that of the eight nuclear-encoded COX subunits, only Cox5ap, Cox6p, and Cox8p are present in the Cox1p module. Both Cox5ap and Cox8p share interfaces with Cox1p in the holoenzyme, whereas Cox6p interacts indirectly through Cox5ap. These results suggest that the subunit contacts in the holoenzyme are probably established during biogenesis of the Cox1p module. To confirm the existence of the largest Cox1p intermediates (D5), which was only inferred previously, radiolabeled Cox1p with a C-terminal tag was expressed in COX-deficient pet111 and pet494 mutants. Pulldown assays confirmed the presence of newly translated Cox1p in D5, which in wild type cannot be demonstrated directly because of its co-migration with COX in the native electrophoresis system used to separate the intermediates. Jointly, the results of these analyses substantiate our previous proposal that COX is assembled from separate assembly modules, each containing one of the mitochondrial-translated core subunits in association with a unique set of nuclear-encoded subunits.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Alelos , Núcleo Celular/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Holoenzimas/química , Mitocondrias/metabolismo , Mutación , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
J Biol Chem ; 287(29): 24346-55, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22621929

RESUMEN

Very little is known about biogenesis of mitochondrial ribosomes. The GTPases encoded by the nuclear MTG1 and MTG2 genes of Saccharomyces cerevisiae have been reported to play a role in assembly of the ribosomal 54 S subunit. In the present study biochemical screens of a collection of respiratory deficient yeast mutants have enabled us to identify a third gene essential for expression of mitochondrial ribosomes. This gene codes for a member of the YqeH family of GTPases, which we have named MTG3 in keeping with the earlier convention. Mutations in MTG3 cause the accumulation of the 15 S rRNA precursor, previously shown to have an 80-nucleotide 5' extension. Sucrose gradient sedimentation of mitochondrial ribosomes from temperature-sensitive mtg3 mutants grown at the permissive and restrictive temperatures, combined with immunobloting with subunit-specific antibodies, indicate that Mtg3p is required for assembly of the 30 S but not 54 S ribosomal subunit. The respiratory deficient growth phenotype of an mtg3 null mutant is partially rescued by overexpression of the Mrpl4p constituent located at the peptide exit site of the 54 S subunit. The rescue is accompanied by an increase in processed 15 S rRNA. This suggests that Mtg3p and Mrpl4p jointly regulate assembly of the small subunit by modulating processing of the 15 S rRNA precursor.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , GTP Fosfohidrolasas/genética , Mutación , ARN Ribosómico/genética , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
11.
Life Sci Alliance ; 6(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37604582

RESUMEN

The Cox6 subunit of Saccharomyces cerevisiae cytochrome oxidase (COX) and the Atp9 subunit of the ATP synthase are encoded in nuclear and mitochondrial DNA, respectively. The two proteins interact to form Atco complexes that serve as the source of Atp9 for ATP synthase assembly. To determine if Atco is also a precursor of COX, we pulse-labeled Cox6 in isolated mitochondria of a cox6 nuclear mutant with COX6 in mitochondrial DNA. Only a small fraction of the newly translated Cox6 was found to be present in Atco, which can explain the low concentration of COX and poor complementation of the cox6 mutation by the allotopic gene. This and other pieces of evidence presented in this study indicate that Atco is an obligatory source of Cox6 for COX biogenesis. Together with our finding that atp9 mutants fail to assemble COX, we propose a regulatory model in which Atco unidirectionally couples the biogenesis of COX to that of the ATP synthase to maintain a proper ratio of these two complexes of oxidative phosphorylation.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales , Proteínas de Saccharomyces cerevisiae , ADN Mitocondrial , Complejo IV de Transporte de Electrones/genética , Mitocondrias , Mutación , Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
J Biol Chem ; 286(38): 32937-47, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21799017

RESUMEN

The bacterial GatCAB operon for tRNA-dependent amidotransferase (AdT) catalyzes the transamidation of mischarged glutamyl-tRNA(Gln) to glutaminyl-tRNA(Gln). Here we describe the phenotype of temperature-sensitive (ts) mutants of GTF1, a gene proposed to code for subunit F of mitochondrial AdT in Saccharomyces cerevisiae. The ts gtf1 mutants accumulate an electrophoretic variant of the mitochondrially encoded Cox2p subunit of cytochrome oxidase and an unstable form of the Atp8p subunit of the F(1)-F(0) ATP synthase that is degraded, thereby preventing assembly of the F(0) sector. Allotopic expression of recoded ATP8 and COX2 did not significantly improve growth of gtf1 mutants on respiratory substrates. However, ts gft1 mutants are partially rescued by overexpression of PET112 and HER2 that code for the yeast homologues of the catalytic subunits of bacterial AdT. Additionally, B66, a her2 point mutant has a phenotype similar to that of gtf1 mutants. These results provide genetic support for the essentiality, in vivo, of the GatF subunit of the heterotrimeric AdT that catalyzes formation of glutaminyl-tRNA(Gln) (Frechin, M., Senger, B., Brayé, M., Kern, D., Martin, R. P., and Becker, H. D. (2009) Genes Dev. 23, 1119-1130).


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Mitocondrias/enzimología , Transferasas de Grupos Nitrogenados/metabolismo , Subunidades de Proteína/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Antimicina A/análogos & derivados , Antimicina A/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Mitocondriales/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mutación/genética , NADH Deshidrogenasa/metabolismo , Péptidos/química , Fenotipo , Biosíntesis de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Temperatura
13.
Hum Mol Genet ; 19(15): 3011-20, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20484225

RESUMEN

Mitochondrial succinate-coenzyme Q reductase (complex II) consists of four subunits, SDHA, SDHB, SDHC and SDHD. Heterozygous germline mutations in SDHB, SDHC, SDHD and SDHAF2 [encoding for succinate dehydrogenase (SDH) complex assembly factor 2] cause hereditary paragangliomas and pheochromocytomas. Surprisingly, no genetic link between SDHA and paraganglioma/pheochromocytoma syndrome has ever been established. We identified a heterozygous germline SDHA mutation, p.Arg589Trp, in a woman suffering from catecholamine-secreting abdominal paraganglioma. The functionality of the SDHA mutant was assessed by studying SDHA, SDHB, HIF-1alpha and CD34 protein expression using immunohistochemistry and by examining the effect of the mutation in a yeast model. Microarray analyses were performed to study gene expression involved in energy metabolism and hypoxic pathways. We also investigated 202 paragangliomas or pheochromocytomas for loss of heterozygosity (LOH) at the SDHA, SDHB, SDHC and SDHD loci by BAC array comparative genomic hybridization. In vivo and in vitro functional studies demonstrated that the SDHA mutation causes a loss of SDH enzymatic activity in tumor tissue and in the yeast model. Immunohistochemistry and transcriptome analyses established that the SDHA mutation causes pseudo-hypoxia, which leads to a subsequent increase in angiogenesis, as other SDHx gene mutations. LOH was detected at the SDHA locus in the patient's tumor but was present in only 4.5% of a large series of paragangliomas and pheochromocytomas. The SDHA gene should be added to the list of genes encoding tricarboxylic acid cycle proteins that act as tumor suppressor genes and can now be considered as a new paraganglioma/pheochromocytoma susceptibility gene.


Asunto(s)
Complejo II de Transporte de Electrones/genética , Genes Supresores de Tumor , Paraganglioma/enzimología , Paraganglioma/genética , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Complejo II de Transporte de Electrones/química , Femenino , Frecuencia de los Genes/genética , Sitios Genéticos/genética , Genotipo , Glucólisis/genética , Humanos , Hipoxia/complicaciones , Hipoxia/genética , Pérdida de Heterocigocidad/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Neovascularización Patológica/complicaciones , Neovascularización Patológica/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación Oxidativa , Paraganglioma/patología , Saccharomyces cerevisiae/genética , Succinato Deshidrogenasa/genética
14.
Proc Natl Acad Sci U S A ; 106(44): 18509-14, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19841266

RESUMEN

The ATP synthase of yeast mitochondria is composed of 17 different subunit polypeptides. We have screened a panel of ATP synthase mutants for impaired expression of Atp6p, Atp8p, and Atp9p, the only mitochondrially encoded subunits of ATP synthase. Our results show that translation of Atp6p and Atp8p is activated by F(1) ATPase (or assembly intermediates thereof). Mutants lacking the alpha or beta subunits of F(1), or the Atp11p and Atp12p chaperones that promote F(1) assembly, have normal levels of the bicistronic ATP8/ATP6 mRNAs but fail to synthesize Atp6p and Atp8p. F(1) mutants are also unable to express ARG8(m) when this normally nuclear gene is substituted for ATP6 or ATP8 in mitochondrial DNA. Translational activation by F(1) is also supported by the ability of ATP22, an Atp6p-specific translation factor, to restore Atp6p and to a lesser degree Atp8p synthesis in the absence of F(1). These results establish a mechanism by which expression of ATP6 and ATP8 is translationally regulated by F(1) to achieve a balanced output of two compartmentally separated sets of ATP synthase genes.


Asunto(s)
Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Biosíntesis de Proteínas , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Biocatálisis , ADN Mitocondrial/genética , Activación Enzimática , Dosificación de Gen , Regulación Fúngica de la Expresión Génica , Genes Supresores , Mitocondrias/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Mutación/genética , Subunidades de Proteína/genética , ATPasas de Translocación de Protón/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Solubilidad , Transcripción Genética , Regulación hacia Arriba/genética
15.
Biochim Biophys Acta ; 1793(1): 108-16, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18672007

RESUMEN

Respiratory deficient mutants of Saccharomyces cerevisiae have been instrumental in identifying an increasing number of nuclear gene products that promote pre- and post-translational steps of the pathway responsible for biogenesis of the mitochondrial ATP synthase. In this article we have attempted to marshal current information about the functions of such accessory factors and the roles they play in expression and assembly of the mitochondrially encoded subunits of the ATP synthase. We also discuss evidence that the ATP synthase may be built up from three separate modules corresponding to the F1 ATPase, the stator and F0.


Asunto(s)
ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Modelos Biológicos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Relación Estructura-Actividad
16.
Hum Mol Genet ; 17(6): 775-88, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18045776

RESUMEN

Cell survival and energy production requires a functional mitochondrial respiratory chain. Biogenesis of cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is a very complicated process and requires the assistance of a large number of accessory factors. Defects in COX assembly alter cellular respiration and produce severe human encephalomyopathies. Mutations in SURF1, a COX assembly factor of exact unknown function, produce Leigh's syndrome (LS), the most frequent cause of COX deficiency in infants. In the yeast Saccharomyces cerevisiae, deletion of the SURF1 homologue SHY1 results in a similar COX deficiency. In order to identify genetic modifiers of the shy1 mutant phenotype, we have explored for genetic interactions involving SHY1. Here we report that overexpression of Hap4p, the catalytic subunit of the CCAAT binding transcriptional activator Hap2/3/4/5p complex, suppresses the respiratory defect of yeast shy1 mutants by increasing the expression of nuclear-encoded COX subunits that interact with the mitochondrially encoded Cox1p. Analogously, overexpression of the Hap complex human homologue NF-YA/B/C transcription complex in SURF1-deficient fibroblasts from an LS patient efficiently rescues their COX deficiency.


Asunto(s)
Proteínas Sanguíneas/fisiología , Factor de Unión a CCAAT/fisiología , Complejo IV de Transporte de Electrones/genética , Saccharomyces cerevisiae/genética , Proteínas Sanguíneas/genética , Línea Celular , Humanos , Mutación
17.
Biochem Biophys Res Commun ; 402(1): 82-7, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20933507

RESUMEN

COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q(2). Rescue of respiration by Q(2) is a characteristic of mutants blocked in coenzyme Q(6) synthesis. Unlike Q(6) deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q(6). The physiological significance of earlier observations that purified Coq10p contains bound Q(6) was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q(2). This suggests that in vivo binding of Q(6) by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains over-producing Coq10p.


Asunto(s)
Respiración de la Célula , Mitocondrias/enzimología , Saccharomyces cerevisiae/enzimología , Ubiquinona/análogos & derivados , Transporte de Electrón , Eliminación de Gen , Saccharomyces cerevisiae/genética , Ubiquinona/biosíntesis , Ubiquinona/genética , Ubiquinona/metabolismo
18.
Mol Biol Cell ; 18(2): 617-26, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17135290

RESUMEN

In the present study we have identified a new metalloprotease encoded by the nuclear ATP23 gene of Saccharomyces cerevisiae that is essential for expression of mitochondrial ATPase (F(1)-F(O) complex). Mutations in ATP23 cause the accumulation of the precursor form of subunit 6 and prevent assembly of F(O). Atp23p is associated with the mitochondrial inner membrane and is conserved from yeast to humans. A mutant harboring proteolytically inactive Atp23p accumulates the subunit 6 precursor but is nonetheless able to assemble a functional ATPase complex. These results indicate that removal of the subunit 6 presequence is not an essential event for ATPase biogenesis and that Atp23p, in addition to its processing activity, must provide another important function in F(O) assembly. The product of the yeast ATP10 gene was previously shown to interact with subunit 6 and to be required for its association with the subunit 9 ring. In this study one extra copy of ATP23 was found to be an effective suppressor of an atp10 null mutant, suggesting an overlap in the functions of Atp23p and Atp10p. Atp23p may, therefore, also be a chaperone, which in conjunction with Atp10p mediates the association of subunit 6 with the subunit 9 ring.


Asunto(s)
Metaloproteasas/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , ADN Mitocondrial/genética , Genes Fúngicos , Metaloproteasas/análisis , Metaloproteasas/genética , Mitocondrias/enzimología , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Mutación , Fenotipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Supresión Genética
19.
Mol Biol Cell ; 18(2): 523-35, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17135289

RESUMEN

Expression of yeast mitochondrial genes depends on specific translational activators acting on the 5'-untranslated region of their target mRNAs. Mss51p is a translational factor for cytochrome c oxidase subunit 1 (COX1) mRNA and a key player in down-regulating Cox1p expression when subunits with which it normally interacts are not available. Mss51p probably acts on the 5'-untranslated region of COX1 mRNA to initiate translation and on the coding sequence itself to facilitate elongation. Mss51p binds newly synthesized Cox1p, an interaction that could be necessary for translation. To gain insight into the different roles of Mss51p on Cox1p biogenesis, we have analyzed the properties of a new mitochondrial protein, mp15, which is synthesized in mss51 mutants and in cytochrome oxidase mutants in which Cox1p translation is suppressed. The mp15 polypeptide is not detected in cox14 mutants that express Cox1p normally. We show that mp15 is a truncated translation product of COX1 mRNA whose synthesis requires the COX1 mRNA-specific translational activator Pet309p. These results support a key role for Mss51p in translationally regulating Cox1p synthesis by the status of cytochrome oxidase assembly.


Asunto(s)
Citocromos c1/biosíntesis , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Biosíntesis de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/metabolismo , Regiones no Traducidas 5'/metabolismo , Cloranfenicol/farmacología , Citocromos c1/genética , Proteínas de la Membrana/análisis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales , Mutación , Proteínas Nucleares/genética , Factores de Iniciación de Péptidos , Péptidos/análisis , Péptidos/genética , Péptidos/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética/genética
20.
PLoS One ; 15(5): e0233177, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32413073

RESUMEN

Mitochondrial oxidative phosphorylation (oxphos) is the process by which the ATP synthase conserves the energy released during the oxidation of different nutrients as ATP. The yeast ATP synthase consists of three assembly modules, one of which is a ring consisting of 10 copies of the Atp9 subunit. We previously reported the existence in yeast mitochondria of high molecular weight complexes composed of mitochondrially encoded Atp9 and of Cox6, an imported structural subunit of cytochrome oxidase (COX). Pulse-chase experiments indicated a correlation between the loss of newly translated Atp9 complexed to Cox6 and an increase of newly formed Atp9 ring, but did not exclude the possibility of an alternate source of Atp9 for ring formation. Here we have extended studies on the functions and structure of this complex, referred to as Atco. We show that Atco is the exclusive source of Atp9 for the ATP synthase assembly. Pulse-chase experiments show that newly translated Atp9, present in Atco, is converted to a ring, which is incorporated into the ATP synthase with kinetics characteristic of a precursor-product relationship. Even though Atco does not contain the ring form of Atp9, cross-linking experiments indicate that it is oligomeric and that the inter-subunit interactions are similar to those of the bona fide ring. We propose that, by providing Atp9 for biogenesis of ATP synthase, Atco complexes free Cox6 for assembly of COX. This suggests that Atco complexes may play a role in coordinating assembly and maintaining proper stoichiometry of the two oxphos enzymes.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ADN Mitocondrial/metabolismo , Complejo IV de Transporte de Electrones/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación Oxidativa , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA