Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 9(8): 8730-8742, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434830

RESUMEN

Osteoporosis is the deterioration of bone mineral density (BMD) because of an imbalance between bone resorption and formation, which might happen due to lots of factors like age, hormonal imbalance, and several others. While this occurrence is prevalent in both genders, it is more common in women, especially postmenopausal women. It is an asymptomatic disease that is underlying until the first incidence of a fracture. The bone is weakened, making it more susceptible to fracture. Even a low trauma can result in a fracture, making osteoporosis an even more alarming disease. These fractures can sometimes be fatal or can make the patient bedridden. Osteoporosis is an understudied disease, and there are certain limitations in diagnosing and early-stage detection of this condition. The standard method of dual X-ray absorptiometry can be used to some extent and can be detected in standard radiographs after the deterioration of a significant amount of bone mass. Clinically assessing osteoporosis using biomarkers can still be challenging, as clinical tests can be expensive and cannot be accessed by most of the general population. In addition, manufacturing antibodies specific to these biomarkers can be a challenging, time-consuming, and expensive method. As an alternative to these antibodies, molecularly imprinted polymers (MIPs) can be used in the detection of these biomarkers. This Review provides a comprehensive exploration of bone formation, resorption, and remodeling processes, linking them to the pathophysiology of osteoporosis. It details biomarker-based detection and diagnosis methods, with a focus on MIPs for sensing CTX-1, NTX-1, and other biomarkers. The discussion compares traditional clinical practices with MIP-based sensors, revealing comparable sensitivity with identified limitations. Additionally, the Review contrasts antibody-functionalized sensors with MIPs. Finally, our Review concludes by highlighting the potential of MIPs in future early-stage osteoporosis detection.

2.
Regen Biomater ; 11: rbae049, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919844

RESUMEN

Microbial infections of bones, particularly after joint replacement surgery, are a common occurrence in clinical settings and often lead to osteomyelitis (OM). Unfortunately, current treatment approaches for OM are not satisfactory. To address this issue, this study focuses on the development and evaluation of an injectable magnesium oxide (MgO) nanoparticle (NP)-coordinated phosphocreatine-grafted chitosan hydrogel (CMPMg-VCM) loaded with varying amounts of vancomycin (VCM) for the treatment of OM. The results demonstrate that the loading of VCM does not affect the formation of the injectable hydrogel, and the MgO-incorporated hydrogel exhibits anti-swelling properties. The release of VCM from the hydrogel effectively kills S.aureus bacteria, with CMPMg-VCM (50) showing the highest antibacterial activity even after prolonged immersion in PBS solution for 12 days. Importantly, all the hydrogels are non-toxic to MC3T3-E1 cells and promote osteogenic differentiation through the early secretion of alkaline phosphatase and calcium nodule formation. Furthermore, in vivo experiments using a rat OM model reveal that the CMPMg-VCM hydrogel effectively kills and inhibits bacterial growth, while also protecting the infected bone from osteolysis. These beneficial properties are attributed to the burst release of VCM, which disrupts bacterial biofilm, as well as the release of Mg ions and hydroxyl by the degradation of MgO NPs, which inhibits bacterial growth and prevents osteolysis. Overall, the CMPMg-VCM hydrogel exhibits promising potential for the treatment of microbial bone infections.

3.
Int J Biol Macromol ; 269(Pt 1): 131914, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703527

RESUMEN

The healing of critical-sized bone defects is a major challenge in the field of bone tissue engineering. Gelatin-related hydrogels have emerged as a potential solution due to their desirable properties. However, their limited osteogenic, mechanical, and reactive oxygen species (ROS)-scavenging capabilities have hindered their clinical application. To overcome this issue, we developed a biofunctional gelatin-Mxene nanocomposite hydrogel. Firstly, we prepared two-dimensional (2D) Ti3C2 MXene nanosheets using a layer delamination method. Secondly, these nanosheets were incorporated into a transglutaminase (TG) enzyme-containing gallic acid-imbedded gelatin (GGA) pre-gel solution to create an injectable GGA-MXene (GM) nanocomposite hydrogel. The GM hydrogels exhibited superior compressive strength (44-75.6 kPa) and modulus (24-44.5 kPa) compared to the GGA hydrogels. Additionally, the GM hydrogel demonstrated the ability to scavenge reactive oxygen species (OH- and DPPH radicals), protecting MC3T3-E1 cells from oxidative stress. GM hydrogels were non-toxic to MC3T3-E1 cells, increased alkaline phosphatase secretion, calcium nodule formation, and upregulated osteogenic gene expressions (ALP, OCN, and RUNX2). The GM400 hydrogel was implanted in critical-sized calvarial defects in rats. Remarkably, it exhibited significant potential for promoting new bone formation. These findings indicated that GM hydrogel could be a viable candidate for future clinical applications in the treatment of critical-sized bone defects.


Asunto(s)
Gelatina , Hidrogeles , Nanocompuestos , Osteogénesis , Especies Reactivas de Oxígeno , Cráneo , Hidrogeles/química , Hidrogeles/farmacología , Animales , Gelatina/química , Nanocompuestos/química , Osteogénesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Cráneo/efectos de los fármacos , Cráneo/patología , Ratones , Ratas , Regeneración Ósea/efectos de los fármacos , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Titanio/química , Línea Celular , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA