RESUMEN
Hsp70 (70 kDa heat shock protein) performs molecular chaperone functions by assisting the folding of newly synthesized and misfolded proteins, thereby counteracting various cell stresses and preventing multiple diseases, including neurodegenerative disorders and cancers. It is well established that, immediately after heat shock, Hsp70 gene expression is mediated by a canonical mechanism of cap-dependent translation. However, the molecular mechanism of Hsp70 expression during heat shock remains elusive. Intriguingly, the 5' end of Hsp70 messenger RNA (mRNA) appears to form a compact structure with the potential to regulate protein expression in a cap-independent manner. Here, we determined the minimal length of the mHsp70 5'-terminal mRNA sequence that is required for RNA folding into a highly compact structure. This span of this RNA element was mapped and the secondary structure characterized by chemical probing, resulting in a secondary structural model that includes multiple stable stems, including one containing the canonical start codon. All of these components, including a short stretch of the 5' open reading frame (ORF), were shown to be vital for RNA folding. This work provides a structural basis for future investigations on the role of translational regulatory structures in the 5' untranslated region and ORF sequences of Hsp70 during heat shock.
RESUMEN
Hsp70 performs molecular chaperone functions by assisting in folding newly synthesized or misfolded proteins, thereby counteracting various cell stresses and preventing multiple diseases including neurodegenerative disorders and cancer. It is well established that Hsp70 upregulation during post-heat shock stimulus is mediated by cap-dependent translation. However, the molecular mechanisms of Hsp70 expression during heat shock stimulus remains elusive, even though the 5' end of Hsp70 mRNA may form a compact structure to positively regulate protein expression in the mode of cap-independent translation. The minimal truncation which can fold to a compact structure was mapped and its secondary structure was characterized by chemical probing. The predicted model revealed a highly compact structure with multiple stems. Including the stem where the canonical start codon is located, several stems were identified to be vital for RNA folding, thereby providing solid structural basis for future investigations on the function of this RNA structure on Hsp70 translation during heat shock.
RESUMEN
Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discovered that neurons localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress. The most abundant dendritic chaperone mRNA encodes a constitutive heat shock protein 70 family member (HSPA8). Proteotoxic stress also enhanced HSPA8 mRNA translation efficiency in dendrites. Stress-mediated HSPA8 mRNA localization to the dendrites was impaired by depleting fused in sarcoma-an amyotrophic lateral sclerosis-related protein-in cultured mouse motor neurons and expressing a pathogenic variant of heterogenous nuclear ribonucleoprotein A2/B1 in neurons derived from human induced pluripotent stem cells. These results reveal a crucial and unexpected neuronal stress response in which RNA-binding proteins increase the dendritic localization of HSPA8 mRNA to maintain proteostasis and prevent neurodegeneration.