Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(13): 7363-7373, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32165544

RESUMEN

After being ingested by a female Anopheles mosquito during a bloodmeal on an infected host, and before they can reach the mosquito salivary glands to be transmitted to a new host, Plasmodium parasites must establish an infection of the mosquito midgut in the form of oocysts. To achieve this, they must first survive a series of robust innate immune responses that take place prior to, during, and immediately after ookinete traversal of the midgut epithelium. Understanding how parasites may evade these responses could highlight new ways to block malaria transmission. We show that an ookinete and sporozoite surface protein designated as PIMMS43 (Plasmodium Infection of the Mosquito Midgut Screen 43) is required for parasite evasion of the Anopheles coluzzii complement-like response. Disruption of PIMMS43 in the rodent malaria parasite Plasmodium berghei triggers robust complement activation and ookinete elimination upon mosquito midgut traversal. Silencing components of the complement-like system through RNAi largely restores ookinete-to-oocyst transition but oocysts remain small in size and produce a very small number of sporozoites that additionally are not infectious, indicating that PIMMS43 is also essential for sporogonic development in the oocyst. Antibodies that bind PIMMS43 interfere with parasite immune evasion when ingested with the infectious blood meal and significantly reduce the prevalence and intensity of infection. PIMMS43 genetic structure across African Plasmodium falciparum populations indicates allelic adaptation to sympatric vector populations. These data add to our understanding of mosquito-parasite interactions and identify PIMMS43 as a target of malaria transmission blocking.


Asunto(s)
Anopheles/inmunología , Mosquitos Vectores/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Animales , Anopheles/metabolismo , Anopheles/parasitología , Femenino , Interacciones Huésped-Parásitos/inmunología , Humanos , Evasión Inmune , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Mosquitos Vectores/metabolismo , Mosquitos Vectores/parasitología , Oocistos/inmunología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Esporozoítos/inmunología
2.
Infect Immun ; 85(8)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28559405

RESUMEN

Mosquito midgut stages of the malaria parasite present an attractive biological system to study host-parasite interactions and develop interventions to block disease transmission. Mosquito infection ensues upon oocyst development that follows ookinete invasion and traversal of the mosquito midgut epithelium. Here, we report the characterization of PIMMS2 (Plasmodium invasion of mosquito midgut screen candidate 2), a Plasmodium berghei protein with structural similarities to subtilisin-like proteins. PIMMS2 orthologs are present in the genomes of all plasmodia and are mapped between the subtilisin-encoding genes SUB1 and SUB3 P. berghei PIMMS2 is specifically expressed in zygotes and ookinetes and is localized on the ookinete surface. Loss of PIMMS2 function through gene disruption by homologous recombination leads to normal development of motile ookinetes that exhibit a severely impaired capacity to traverse the mosquito midgut and transform to oocysts. Genetic complementation of the disrupted locus with a mutated PIMMS2 allele reveals that amino acid residues corresponding to the putative subtilisin-like catalytic triad are important but not essential for protein function. Our data demonstrate that PIMMS2 is a novel ookinete-specific protein that promotes parasite traversal of the mosquito midgut epithelium and establishment of mosquito infection.

3.
Cell Microbiol ; 17(8): 1230-40, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25728487

RESUMEN

The malaria parasite develops sexually in the mosquito midgut upon entry with the ingested blood meal before it can invade the midgut epithelium and embark on sporogony. Recent data have identified a number of distinct transcriptional programmes operating during this critical phase of the parasite life cycle. We aimed at characterizing the parental contribution to these transcriptional programmes and establish the genetic framework that would guide further studies of Plasmodium zygotic development and ookinete-to-oocyst transition. To achieve this we used in vitro and in vivo cross-fertilization experiments of various parasite lines expressing fluorescent reporters under the control of constitutive and stage-specific promoters. The results revealed that the zygote/ookinete stage exhibits a maternal phenotype with respect to constitutively expressed reporters, which is derived from either maternal mRNA inheritance or transcription of the maternal allele. The respective paternal alleles are silenced in the zygote/ookinete but reactivated after midgut invasion and transformation to oocyst. Transcripts specifically produced in the zygote/ookinete are synthesized de novo by both parental alleles. These findings highlight a putative role of epigenetic regulation of Plasmodium zygotic development and add substantially to the emerging picture of the molecular mechanisms regulating this important stage of malaria transmission.


Asunto(s)
ADN Protozoario/genética , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Genes Protozoarios , Oocistos , Plasmodium berghei/genética , Activación Transcripcional , Fusión Artificial Génica , Perfilación de la Expresión Génica , Genes Reporteros , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Regiones Promotoras Genéticas , Transcripción Genética
4.
Front Cell Infect Microbiol ; 11: 634273, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791240

RESUMEN

Plasmodium falciparum malaria remains a major cause of global morbidity and mortality, mainly in sub-Saharan Africa. The numbers of new malaria cases and deaths have been stable in the last years despite intense efforts for disease elimination, highlighting the need for new approaches to stop disease transmission. Further understanding of the parasite transmission biology could provide a framework for the development of such approaches. We phenotypically and functionally characterized three novel genes, PIMMS01, PIMMS57, and PIMMS22, using targeted disruption of their orthologs in the rodent parasite Plasmodium berghei. PIMMS01 and PIMMS57 are specifically and highly expressed in ookinetes, while PIMMS22 transcription starts already in gametocytes and peaks in sporozoites. All three genes show strong phenotypes associated with the ookinete to oocyst transition, as their disruption leads to very low numbers of oocysts and complete abolishment of transmission. PIMMS22 has a secondary essential function in the oocyst. Our results enrich the molecular understanding of the parasite-vector interactions and identify PIMMS01, PIMMS57, and PIMMS22 as new targets of transmission blocking interventions.


Asunto(s)
Malaria Falciparum , Malaria , Animales , Oocistos , Plasmodium berghei , Esporozoítos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA