Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell ; 186(18): 3845-3861.e24, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37591240

RESUMEN

Dopaminergic projections regulate various brain functions and are implicated in many neuropsychiatric disorders. There are two anatomically and functionally distinct dopaminergic projections connecting the midbrain to striatum: nigrostriatal, which controls movement, and mesolimbic, which regulates motivation. However, how these discrete dopaminergic synaptic connections are established is unknown. Through an unbiased search, we identify that two groups of antagonistic TGF-ß family members, bone morphogenetic protein (BMP)6/BMP2 and transforming growth factor (TGF)-ß2, regulate dopaminergic synapse development of nigrostriatal and mesolimbic neurons, respectively. Projection-preferential expression of their receptors contributes to specific synapse development. Downstream, Smad1 and Smad2 are specifically activated and required for dopaminergic synapse development and function in nigrostriatal vs. mesolimbic projections. Remarkably, Smad1 mutant mice show motor defects, whereas Smad2 mutant mice show lack of motivation. These results uncover the molecular logic underlying the proper establishment of functionally segregated dopaminergic synapses and may provide strategies to treat relevant, projection-specific disease symptoms by targeting specific BMPs/TGF-ß and/or Smads.


Asunto(s)
Cuerpo Estriado , Dopamina , Animales , Ratones , Mesencéfalo , Motivación , Movimiento , Sinapsis
2.
EMBO J ; 39(16): e104136, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32452062

RESUMEN

Developmental synaptic remodeling is important for the formation of precise neural circuitry, and its disruption has been linked to neurodevelopmental disorders such as autism and schizophrenia. Microglia prune synapses, but integration of this synapse pruning with overlapping and concurrent neurodevelopmental processes, remains elusive. Adhesion G protein-coupled receptor ADGRG1/GPR56 controls multiple aspects of brain development in a cell type-specific manner: In neural progenitor cells, GPR56 regulates cortical lamination, whereas in oligodendrocyte progenitor cells, GPR56 controls developmental myelination and myelin repair. Here, we show that microglial GPR56 maintains appropriate synaptic numbers in several brain regions in a time- and circuit-dependent fashion. Phosphatidylserine (PS) on presynaptic elements binds GPR56 in a domain-specific manner, and microglia-specific deletion of Gpr56 leads to increased synapses as a result of reduced microglial engulfment of PS+ presynaptic inputs. Remarkably, a particular alternatively spliced isoform of GPR56 is selectively required for microglia-mediated synaptic pruning. Our present data provide a ligand- and isoform-specific mechanism underlying microglial GPR56-mediated synapse pruning in the context of complex neurodevelopmental processes.


Asunto(s)
Empalme Alternativo , Microglía/metabolismo , Fosfatidilserinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sinapsis/metabolismo , Animales , Ratones , Ratones Transgénicos , Microglía/citología , Fosfatidilserinas/genética , Unión Proteica , Isoformas de Proteínas , Receptores Acoplados a Proteínas G/genética , Sinapsis/genética
3.
Mol Psychiatry ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737483

RESUMEN

Functional and structural connectivity alterations in short- and long-range projections have been reported across neurodevelopmental disorders (NDD). Interhemispheric callosal projection neurons (CPN) represent one of the major long-range projections in the brain, which are particularly important for higher-order cognitive function and flexibility. However, whether a causal relationship exists between interhemispheric connectivity alterations and cognitive deficits in NDD remains elusive. Here, we focused on CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental disorder caused by mutations in the X-linked Cyclin-dependent kinase-like 5 (CDKL5) gene. We found an increase in homotopic interhemispheric connectivity and functional hyperconnectivity across higher cognitive areas in adult male and female CDKL5-deficient mice by resting-state functional MRI (rs-fMRI) analysis. This was accompanied by an increase in the number of callosal synaptic inputs but decrease in local synaptic connectivity in the cingulate cortex of juvenile CDKL5-deficient mice, suggesting an impairment in excitatory synapse development and a differential role of CDKL5 across excitatory neuron subtypes. These deficits were associated with significant cognitive impairments in CDKL5 KO mice. Selective deletion of CDKL5 in the largest subtype of CPN likewise resulted in an increase of functional callosal inputs, without however significantly altering intracortical cingulate networks. Notably, such callosal-specific changes were sufficient to cause cognitive deficits. Finally, when CDKL5 was selectively re-expressed only in this CPN subtype, in otherwise CDKL5-deficient mice, it was sufficient to prevent the cognitive impairments of CDKL5 mutants. Together, these results reveal a novel role of CDKL5 by demonstrating that it is both necessary and sufficient for proper CPN connectivity and cognitive function and flexibility, and further validates a causal relationship between CPN dysfunction and cognitive impairment in a model of NDD.

4.
J Neurosci ; 42(21): 4250-4266, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35504727

RESUMEN

The Protocadherin-10 (PCDH10) gene is associated with autism spectrum disorder (ASD), obsessive-compulsive disorder (OCD), and major depression (MD). The PCDH10 protein is a homophilic cell adhesion molecule that belongs to the δ2-protocadherin family. PCDH10 is highly expressed in the developing brain, especially in the basolateral nucleus of the amygdala (BLA). However, the role of PCDH10 in vivo has been debatable: one paper reported that a Pcdh10 mutant mouse line showed changes in axonal projections; however, another Pcdh10 mutant mouse line was reported to have failed to detect axonal phenotypes. Therefore, the actual roles of PCDH10 in the brain remain to be elucidated. We established a new Pcdh10 KO mouse line using the CRISPR/Cas9 system, without inserting gene cassettes to avoid nonspecific effects, examined the roles of PCDH10 in the brain, and studied the behavioral consequences of Pcdh10 inactivation. Here, we show that Pcdh10 KO mice do not show defects in axonal development. Instead, we find that Pcdh10 KO mice exhibit impaired development of excitatory synapses in the dorsal BLA. We further demonstrate that male Pcdh10 KO mice exhibit reduced anxiety-related behaviors, impaired fear conditioning, decreased stress-coping responses, and mildly impaired social recognition and communication. These results indicate that PCDH10 plays a critical role in excitatory synapse development, but not axon development, in the dorsal BLA and that PCDH10 regulates anxiety-related, fear-related, and stress-related behaviors. Our results reveal the roles of PCDH10 in the brain and its relationship to relevant psychiatric disorders such as ASD, OCD, and MD.SIGNIFICANCE STATEMENTProtocadherin-10 (PCDH10) encodes a cell adhesion molecule and is implicated in autism spectrum disorder (ASD), obsessive-compulsive disorder (OCD), and major depression (MD). PCDH10 is highly expressed in the basolateral nucleus of the amygdala (BLA). However, the phenotypes of previously published Pcdh10 mutant mice are debatable, and some are possibly because of the nonspecific effects of the LacZ/Neo cassette inserted in the mice. We have generated a new Pcdh10 mutant mouse line without the LacZ/Neo cassette. Using our new mouse line, we reveal the roles of PCDH10 for excitatory synapse development in the BLA. The mutant mice exhibit anxiety-related, fear-related, and stress-related behaviors, which are relevant to ASD, OCD, and MD, suggesting a possible treatment strategy for such psychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Obsesivo Compulsivo , Amígdala del Cerebelo/metabolismo , Animales , Ansiedad/genética , Ansiedad/psicología , Trastorno del Espectro Autista/metabolismo , Miedo/fisiología , Humanos , Masculino , Ratones , Protocadherinas , Sinapsis/metabolismo
5.
J Biol Chem ; 293(31): 12026-12042, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29914984

RESUMEN

Synapse maturation is a neural activity-dependent process during brain development, in which active synapses preferentially undergo maturation to establish efficient neural circuits in the brain. Defects in this process are implicated in various neuropsychiatric disorders. We have previously reported that a postsynaptic transmembrane protein, signal regulatory protein-α (SIRPα), plays an important role in activity-dependently directing synapse maturation. In the presence of synaptic activity, the ectodomain of SIRPα is cleaved and released and then acts as a retrograde signal to induce presynaptic maturation. However, how SIRPα detects synaptic activity to promote its ectodomain cleavage and synapse maturation is unknown. Here, we show that activity-dependent tyrosine phosphorylation of SIRPα is critical for SIRPα cleavage and synapse maturation. We found that during synapse maturation and in response to neural activity, SIRPα is highly phosphorylated on its tyrosine residues in the hippocampus, a structure critical for learning and memory. Tyrosine phosphorylation of SIRPα was necessary for SIRPα cleavage and presynaptic maturation, as indicated by the fact that a phosphorylation-deficient SIRPα variant underwent much less cleavage and could not drive presynaptic maturation. However, SIRPα phosphorylation did not affect its synaptic localization. Finally, we show that inhibitors of the Src and JAK kinase family suppress neural activity-dependent SIRPα phosphorylation and cleavage. Together, our results indicate that SIRPα phosphorylation serves as a mechanism for detecting synaptic activity and linking it to the ectodomain cleavage of SIRPα, which in turn drives synapse maturation in an activity-dependent manner.


Asunto(s)
Memoria/fisiología , Neuronas/metabolismo , Procesamiento Proteico-Postraduccional , Receptores Inmunológicos/metabolismo , Sinapsis/metabolismo , Tirosina/metabolismo , Animales , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Quinasas Janus/genética , Quinasas Janus/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Fosforilación , Cloruro de Potasio/farmacología , Cultivo Primario de Células , Dominios Proteicos , Proteolisis , Receptores Inmunológicos/genética , Sinapsis/efectos de los fármacos , Transmisión Sináptica , Inhibidores Tisulares de Metaloproteinasas/farmacología , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
6.
EMBO J ; 34(9): 1231-43, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25766255

RESUMEN

The remodeling of axonal circuits after injury requires the formation of new synaptic contacts to enable functional recovery. Which molecular signals initiate such axonal and synaptic reorganisation in the adult central nervous system is currently unknown. Here, we identify FGF22 as a key regulator of circuit remodeling in the injured spinal cord. We show that FGF22 is produced by spinal relay neurons, while its main receptors FGFR1 and FGFR2 are expressed by cortical projection neurons. FGF22 deficiency or the targeted deletion of FGFR1 and FGFR2 in the hindlimb motor cortex limits the formation of new synapses between corticospinal collaterals and relay neurons, delays their molecular maturation, and impedes functional recovery in a mouse model of spinal cord injury. These results establish FGF22 as a synaptogenic mediator in the adult nervous system and a crucial regulator of synapse formation and maturation during post-injury remodeling in the spinal cord.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Sinapsis/metabolismo , Animales , Axones/fisiología , Factores de Crecimiento de Fibroblastos/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Regeneración Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Traumatismos de la Médula Espinal/fisiopatología , Sinapsis/fisiología
7.
Development ; 142(10): 1818-30, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25926357

RESUMEN

Neurons in the brain must establish a balanced network of excitatory and inhibitory synapses during development for the brain to function properly. An imbalance between these synapses underlies various neurological and psychiatric disorders. The formation of excitatory and inhibitory synapses requires precise molecular control. In the hippocampus, the structure crucial for learning and memory, fibroblast growth factor 22 (FGF22) and FGF7 specifically promote excitatory or inhibitory synapse formation, respectively. Knockout of either Fgf gene leads to excitatory-inhibitory imbalance in the mouse hippocampus and manifests in an altered susceptibility to epileptic seizures, underscoring the importance of FGF-dependent synapse formation. However, the receptors and signaling mechanisms by which FGF22 and FGF7 induce excitatory and inhibitory synapse differentiation are unknown. Here, we show that distinct sets of overlapping FGF receptors (FGFRs), FGFR2b and FGFR1b, mediate excitatory or inhibitory presynaptic differentiation in response to FGF22 and FGF7. Excitatory presynaptic differentiation is impaired in Fgfr2b and Fgfr1b mutant mice; however, inhibitory presynaptic defects are only found in Fgfr2b mutants. FGFR2b and FGFR1b are required for an excitatory presynaptic response to FGF22, whereas only FGFR2b is required for an inhibitory presynaptic response to FGF7. We further find that FGFRs are required in the presynaptic neuron to respond to FGF22, and that FRS2 and PI3K, but not PLCγ, mediate FGF22-dependent presynaptic differentiation. Our results reveal the specific receptors and signaling pathways that mediate FGF-dependent presynaptic differentiation, and thereby provide a mechanistic understanding of precise excitatory and inhibitory synapse formation in the mammalian brain.


Asunto(s)
Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Sinapsis/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones , Ratones Noqueados , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/citología , Neuronas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética
8.
Development ; 142(22): 3879-91, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26417041

RESUMEN

Neuronal activity, including intrinsic neuronal excitability and synaptic transmission, is an essential regulator of brain development. However, how the intrinsic neuronal excitability of distinct neurons affects their integration into developing circuits remains poorly understood. To investigate this problem, we created several transgenic mouse lines in which intrinsic excitability is suppressed, and the neurons are effectively silenced, in different excitatory neuronal populations of the hippocampus. Here we show that CA1, CA3 and dentate gyrus neurons each have unique responses to suppressed intrinsic excitability during circuit development. Silenced CA1 pyramidal neurons show altered spine development and synaptic transmission after postnatal day 15. By contrast, silenced CA3 pyramidal neurons seem to develop normally. Silenced dentate granule cells develop with input-specific decreases in spine density starting at postnatal day 11; however, a compensatory enhancement of neurotransmitter release onto these neurons maintains normal levels of synaptic activity. The synaptic changes in CA1 and dentate granule neurons are not observed when synaptic transmission, rather than intrinsic excitability, is blocked in these neurons. Thus, our results demonstrate a crucial role for intrinsic neuronal excitability in establishing hippocampal connectivity and reveal that neuronal development in each hippocampal region is distinctly regulated by excitability.


Asunto(s)
Hipocampo/embriología , Neurogénesis/fisiología , Neuronas/citología , Transmisión Sináptica/fisiología , Análisis de Varianza , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Recuento de Células , Dendritas/ultraestructura , Giro Dentado/citología , Inmunohistoquímica , Ratones , Ratones Transgénicos , Microscopía Confocal , Neuronas/metabolismo , Células Piramidales/citología , Células Piramidales/metabolismo
9.
J Cell Sci ; 128(2): 281-92, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25431136

RESUMEN

Specific formation of excitatory and inhibitory synapses is crucial for proper functioning of the brain. Fibroblast growth factor 22 (FGF22) and FGF7 are postsynaptic-cell-derived presynaptic organizers necessary for excitatory and inhibitory presynaptic differentiation, respectively, in the hippocampus. For the establishment of specific synaptic networks, these FGFs must localize to appropriate synaptic locations - FGF22 to excitatory and FGF7 to inhibitory postsynaptic sites. Here, we show that distinct motor and adaptor proteins contribute to intracellular microtubule transport of FGF22 and FGF7. Excitatory synaptic targeting of FGF22 requires the motor proteins KIF3A and KIF17 and the adaptor protein SAP102 (also known as DLG3). By contrast, inhibitory synaptic targeting of FGF7 requires the motor KIF5 and the adaptor gephyrin. Time-lapse imaging shows that FGF22 moves with SAP102, whereas FGF7 moves with gephyrin. These results reveal the basis of selective targeting of the excitatory and inhibitory presynaptic organizers that supports their different synaptogenic functions. Finally, we found that knockdown of SAP102 or PSD95 (also known as DLG4), which impairs the differentiation of excitatory synapses, alters FGF7 localization, suggesting that signals from excitatory synapses might regulate inhibitory synapse formation by controlling the distribution of the inhibitory presynaptic organizer.


Asunto(s)
Factor 7 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hipocampo/metabolismo , Sinapsis/metabolismo , Animales , Proteínas Portadoras/metabolismo , Potenciales Postsinápticos Excitadores/genética , Factor 7 de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/genética , Hipocampo/crecimiento & desarrollo , Humanos , Cinesinas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Microtúbulos/metabolismo , Sinapsis/fisiología
10.
Nature ; 465(7299): 783-7, 2010 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-20505669

RESUMEN

The differential formation of excitatory (glutamate-mediated) and inhibitory (GABA-mediated) synapses is a critical step for the proper functioning of the brain. An imbalance in these synapses may lead to various neurological disorders such as autism, schizophrenia, Tourette's syndrome and epilepsy. Synapses are formed through communication between the appropriate synaptic partners. However, the molecular mechanisms that mediate the formation of specific synaptic types are not known. Here we show that two members of the fibroblast growth factor (FGF) family, FGF22 and FGF7, promote the organization of excitatory and inhibitory presynaptic terminals, respectively, as target-derived presynaptic organizers. FGF22 and FGF7 are expressed by CA3 pyramidal neurons in the hippocampus. The differentiation of excitatory or inhibitory nerve terminals on dendrites of CA3 pyramidal neurons is specifically impaired in mutants lacking FGF22 or FGF7. These presynaptic defects are rescued by postsynaptic expression of the appropriate FGF. FGF22-deficient mice are resistant to epileptic seizures, and FGF7-deficient mice are prone to them, as expected from the alterations in excitatory/inhibitory balance. Differential effects of FGF22 and FGF7 involve both their distinct synaptic localizations and their use of different signalling pathways. These results demonstrate that specific FGFs act as target-derived presynaptic organizers and help to organize specific presynaptic terminals in the mammalian brain.


Asunto(s)
Diferenciación Celular , Potenciales Postsinápticos Excitadores/fisiología , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Sinapsis/clasificación , Sinapsis/metabolismo , Animales , Células Cultivadas , Dendritas/metabolismo , Susceptibilidad a Enfermedades , Epilepsia/inducido químicamente , Epilepsia/genética , Epilepsia/fisiopatología , Factor 7 de Crecimiento de Fibroblastos/deficiencia , Factor 7 de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/deficiencia , Factores de Crecimiento de Fibroblastos/genética , Perfilación de la Expresión Génica , Ácido Glutámico/metabolismo , Hipocampo/citología , Hipocampo/embriología , Hipocampo/metabolismo , Hipocampo/patología , Hibridación in Situ , Excitación Neurológica , Ratones , Ratones Noqueados , Potenciales Postsinápticos Miniatura/fisiología , Terminales Presinápticos/clasificación , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología , Terminales Presinápticos/ultraestructura , Células Piramidales/citología , Células Piramidales/metabolismo , Células Piramidales/patología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/radioterapia , Sinapsis/patología , Sinapsis/ultraestructura , Transmisión Sináptica , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patología , Vesículas Sinápticas/ultraestructura , Ácido gamma-Aminobutírico/metabolismo
11.
EMBO J ; 28(23): 3717-29, 2009 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19834457

RESUMEN

Major depressive and bipolar disorders are serious illnesses that affect millions of people. Growing evidence implicates glutamate signalling in depression, though the molecular mechanism by which glutamate signalling regulates depression-related behaviour remains unknown. In this study, we provide evidence suggesting that tyrosine phosphorylation of the NMDA receptor, an ionotropic glutamate receptor, contributes to depression-related behaviour. The NR2A subunit of the NMDA receptor is tyrosine-phosphorylated, with Tyr 1325 as its one of the major phosphorylation site. We have generated mice expressing mutant NR2A with a Tyr-1325-Phe mutation to prevent the phosphorylation of this site in vivo. The homozygous knock-in mice show antidepressant-like behaviour in the tail suspension test and in the forced swim test. In the striatum of the knock-in mice, DARPP-32 phosphorylation at Thr 34, which is important for the regulation of depression-related behaviour, is increased. We also show that the Tyr 1325 phosphorylation site is required for Src-induced potentiation of the NMDA receptor channel in the striatum. These data argue that Tyr 1325 phosphorylation regulates NMDA receptor channel properties and the NMDA receptor-mediated downstream signalling to modulate depression-related behaviour.


Asunto(s)
Depresión/metabolismo , Depresión/fisiopatología , Receptores de N-Metil-D-Aspartato/fisiología , Tirosina/fisiología , Animales , Línea Celular , Depresión/genética , Depresión/psicología , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Técnicas de Sustitución del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenilalanina/genética , Fosforilación/genética , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/genética , Tirosina/genética
12.
Mol Cell Neurosci ; 51(3-4): 61-7, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22889808

RESUMEN

One of the most common types of epilepsy in adults is temporal lobe epilepsy. Temporal lobe epilepsy is often resistant to pharmacological treatment, requiring urgent understanding of its molecular and cellular mechanisms. It is generally accepted that an imbalance between excitatory and inhibitory inputs is related to epileptogenesis. We have recently identified that fibroblast growth factor (FGF) 7 is critical for inhibitory synapse formation in the developing hippocampus. Remarkably, FGF7 knockout mice are prone to epileptic seizures induced by chemical kindling (Terauchi et al., 2010). Here we show that FGF7 knockout mice exhibit epileptogenesis-related changes in the hippocampus even without kindling induction. FGF7 knockout mice show mossy fiber sprouting and enhanced dentate neurogenesis by 2 months of age, without apparent spontaneous seizures. These results suggest that FGF7-deficiency impairs inhibitory synapse formation, which results in mossy fiber sprouting and enhanced neurogenesis during development, making FGF7 knockout mice vulnerable to epilepsy.


Asunto(s)
Factor 7 de Crecimiento de Fibroblastos/genética , Fibras Musgosas del Hipocampo/fisiología , Neurogénesis , Animales , Giro Dentado/citología , Giro Dentado/crecimiento & desarrollo , Giro Dentado/fisiología , Ratones , Ratones Noqueados , Fibras Musgosas del Hipocampo/ultraestructura , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/fisiopatología , Sinapsis/fisiología , Sinapsis/ultraestructura , Potenciales Sinápticos
13.
Neuroscientist ; : 10738584231170167, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37140155

RESUMEN

The refinement of immature neuronal networks into efficient mature ones is critical to nervous system development and function. This process of synapse refinement is driven by the neuronal activity-dependent competition of converging synaptic inputs, resulting in the elimination of weak inputs and the stabilization of strong ones. Neuronal activity, whether in the form of spontaneous activity or experience-evoked activity, is known to drive synapse refinement in numerous brain regions. More recent studies are now revealing the manner and mechanisms by which neuronal activity is detected and converted into molecular signals that appropriately regulate the elimination of weaker synapses and stabilization of stronger ones. Here, we highlight how spontaneous activity and evoked activity instruct neuronal activity-dependent competition during synapse refinement. We then focus on how neuronal activity is transformed into the molecular cues that determine and execute synapse refinement. A comprehensive understanding of the mechanisms underlying synapse refinement can lead to novel therapeutic strategies in neuropsychiatric diseases characterized by aberrant synaptic function.

14.
Curr Opin Neurobiol ; 79: 102692, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36805716

RESUMEN

The formation of appropriate synaptic connections is critical for the proper functioning of the brain. Early in development, neurons form a surplus of immature synapses. To establish efficient, functional neural networks, neurons selectively stabilize active synapses and eliminate less active ones. This process is known as activity-dependent synapse refinement. Defects in this process have been implicated in neuropsychiatric disorders such as schizophrenia and autism. Here we review the manner and mechanisms by which synapse elimination is regulated through activity-dependent competition. We propose a theoretical framework for the molecular mechanisms of synapse refinement, in which three types of signals regulate the refinement. We then describe the identity of these signals and discuss how multiple molecular signals interact to achieve appropriate synapse refinement in the brain.


Asunto(s)
Neuronas , Sinapsis , Neuronas/fisiología , Sinapsis/fisiología , Encéfalo
15.
Sci Adv ; 9(43): eadj1010, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37878694

RESUMEN

The time of day strongly influences adaptive behaviors like long-term memory, but the correlating synaptic and molecular mechanisms remain unclear. The circadian clock comprises a canonical transcription-translation feedback loop (TTFL) strictly dependent on the BMAL1 transcription factor. We report that BMAL1 rhythmically localizes to hippocampal synapses in a manner dependent on its phosphorylation at Ser42 [pBMAL1(S42)]. pBMAL1(S42) regulates the autophosphorylation of synaptic CaMKIIα and circadian rhythms of CaMKIIα-dependent molecular interactions and LTP but not global rest/activity behavior. Therefore, our results suggest a model in which repurposing of the clock protein BMAL1 to synapses locally gates the circadian timing of plasticity.


Asunto(s)
Factores de Transcripción ARNTL , Relojes Circadianos , Fosforilación , Factores de Transcripción ARNTL/genética , Ritmo Circadiano/fisiología , Hipocampo/metabolismo
16.
STAR Protoc ; 2(3): 100742, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34430915

RESUMEN

The visual system is the best system to study activity-dependent sensory circuit development. The connections from the retina to the dorsal lateral geniculate nucleus, the retinogeniculate connections, undergo extensive remodeling during early postnatal life. Thus, techniques that allow the expression of transgenes early in the developing retina are essential to study visual system development. Here, we describe a protocol to express genes-of-interest in the developing mouse retina via in utero intraocular adeno-associated virus injections. For complete details on the use and execution of this protocol, please refer to Yasuda et al. (2021).


Asunto(s)
Inyecciones Intraoculares/métodos , Retina/embriología , Transgenes/genética , Animales , Dependovirus/genética , Feto/cirugía , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Ratones/embriología , Retina/crecimiento & desarrollo , Sinapsis , Transcriptoma/genética , Vías Visuales/crecimiento & desarrollo
17.
Science ; 372(6539)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33859005

RESUMEN

Protocadherin-19 (PCDH19) mutations cause early-onset seizures and cognitive impairment. The PCDH19 gene is on the X-chromosome. Unlike most X-linked disorders, PCDH19 mutations affect heterozygous females (PCDH19HET♀ ) but not hemizygous males (PCDH19HEMI♂ ); however, the reason why remains to be elucidated. We demonstrate that PCDH19, a cell-adhesion molecule, is enriched at hippocampal mossy fiber synapses. Pcdh19HET♀ but not Pcdh19HEMI♂ mice show impaired mossy fiber synaptic structure and physiology. Consistently, Pcdh19HET♀ but not Pcdh19HEMI♂ mice exhibit reduced pattern completion and separation abilities, which require mossy fiber synaptic function. Furthermore, PCDH19 appears to interact with N-cadherin at mossy fiber synapses. In Pcdh19HET♀ conditions, mismatch between PCDH19 and N-cadherin diminishes N-cadherin-dependent signaling and impairs mossy fiber synapse development; N-cadherin overexpression rescues Pcdh19HET♀ phenotypes. These results reveal previously unknown molecular and cellular mechanisms underlying the female-specific PCDH19 disorder phenotype.


Asunto(s)
Cadherinas/metabolismo , Disfunción Cognitiva/fisiopatología , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Fibras Musgosas del Hipocampo/fisiopatología , Sinapsis/fisiología , Animales , Región CA3 Hipocampal/fisiopatología , Región CA3 Hipocampal/ultraestructura , Cadherinas/genética , Disfunción Cognitiva/genética , Modelos Animales de Enfermedad , Epilepsia/genética , Epilepsia/fisiopatología , Femenino , Genes Ligados a X , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Potenciación a Largo Plazo , Masculino , Ratones , Fibras Musgosas del Hipocampo/ultraestructura , Mutación , Protocadherinas , Caracteres Sexuales , Sinapsis/ultraestructura , beta Catenina/metabolismo
18.
Neuron ; 109(8): 1333-1349.e6, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33770504

RESUMEN

To establish functional neural circuits in the brain, synaptic connections are refined by neural activity during development, where active connections are maintained and inactive ones are eliminated. However, the molecular signals that regulate synapse refinement remain to be elucidated. When we inactivate a subset of neurons in the mouse cingulate cortex, their callosal connections are eliminated through activity-dependent competition. Using this system, we identify JAK2 tyrosine kinase as a key regulator of inactive synapse elimination. We show that JAK2 is necessary and sufficient for elimination of inactive connections; JAK2 is activated at inactive synapses in response to signals from other active synapses; STAT1, a substrate of JAK2, mediates inactive synapse elimination; JAK2 signaling is critical for physiological refinement of synapses during normal development; and JAK2 regulates synapse refinement in multiple brain regions. We propose that JAK2 is an activity-dependent switch that serves as a determinant of inactive synapse elimination.


Asunto(s)
Giro del Cíngulo/fisiología , Janus Quinasa 2/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Giro del Cíngulo/metabolismo , Ratones , Neuronas/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/fisiología , Sinapsis/metabolismo
19.
Eur J Neurosci ; 32(2): 181-90, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20646052

RESUMEN

A critical step in synaptic development is the differentiation of presynaptic and postsynaptic compartments. This complex process is regulated by a variety of secreted factors that serve as synaptic organizers. Specifically, fibroblast growth factors, Wnts, neurotrophic factors and various other intercellular signaling molecules are proposed to regulate presynaptic and/or postsynaptic differentiation. Many of these factors appear to function at both the neuromuscular junction and in the central nervous system, although the specific function of the molecules differs between the two. Here we review secreted molecules that organize the synaptic compartments and discuss how these molecules shape synaptic development, focusing on mammalian in vivo systems. Their critical role in shaping a functional neural circuit is underscored by their possible link to a wide range of neurological and psychiatric disorders both in animal models and by mutations identified in human patients.


Asunto(s)
Sinapsis/metabolismo , Sinapsis/ultraestructura , Animales , Diferenciación Celular , Humanos , Factores de Crecimiento Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Neuronas/citología
20.
Neuroreport ; 31(2): 125-130, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31895747

RESUMEN

Growth factor signaling in the brain is implicated in many neuropsychiatric disorders, including depression, autism, and epilepsy. Fibroblast growth factor 22 is a growth factor that regulates excitatory synapse development and neurogenesis in the brain. We have previously shown that adult mice in which fibroblast growth factor 22 is constitutively inactivated in all cells throughout life (fibroblast growth factor 22-null mice) show anhedonia, a core feature of depression in humans, suggesting that fibroblast growth factor 22 signaling contributes to the regulation of affective behavior. Here we asked (1) whether inactivation of fibroblast growth factor 22 specifically in neurons is sufficient to induce anhedonia in mice and (2) whether fibroblast growth factor 22 signaling is important during development or in adults for the regulation of affective behavior. To address these questions, we performed the sucrose preference test, which is used as an indicator of anhedonia, with neuron-specific conditional fibroblast growth factor 22 knockout mice, in which fibroblast growth factor 22 is inactivated in neurons at birth (neonatal-fibroblast growth factor 22-knockout mice) or in adults (adult-fibroblast growth factor 22-knockout mice). We found that neonatal-fibroblast growth factor 22-knockout mice show anhedonia (decreased preference for sucrose), while adult-fibroblast growth factor 22-knockout mice do not. Therefore, neuronal fibroblast growth factor 22 signaling is critical during development, and not in adults, for the regulation of affective behavior. Our work also implies that defects in growth factor-dependent synapse development, neurogenesis, or both may underlie depression of a developmental origin.


Asunto(s)
Anhedonia/fisiología , Encéfalo/crecimiento & desarrollo , Factores de Crecimiento de Fibroblastos/genética , Neurogénesis/genética , Envejecimiento , Animales , Encéfalo/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas/metabolismo , Transducción de Señal/fisiología , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA