Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 28: 385-410, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23057744

RESUMEN

Efforts in the interdisciplinary field of bioengineering have led to innovative methods for investigating the complexities of cell responses in vitro. These approaches have emphasized the reduction of complex multicomponent cellular microenvironments into distinct individual signals as a means to both (a) better construct mimics of in vivo microenvironments and (b) better deconstruct microenvironments to study them. Microtechnology tools, together with advances in biomaterials, have been fundamental to this progress by enabling the tightly controlled presentation of environmental cues and the improved systematic analysis of cellular perturbations. In this review, we describe bioengineering approaches for controlling and measuring cell-environmental interactions in vitro, including strategies for high-throughput analysis. We also describe the mechanistic insights gained by the use of these novel tools, with associated applications ranging from fundamental biological studies, in vitro modeling of in vivo processes, and cell-based therapies.


Asunto(s)
Técnicas de Cultivo de Célula , Ingeniería Celular/métodos , Fenómenos Biomecánicos , Materiales Biomiméticos , Reactores Biológicos , Adhesión Celular , Humanos , Técnicas Analíticas Microfluídicas , Análisis de Matrices Tisulares/métodos
2.
Biotechnol Bioeng ; 119(6): 1641-1659, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35192191

RESUMEN

While cells are known to behave differently based on the size of micropatterned islands, and this behavior is thought to be related to cell size and cell-cell contacts, the exact threshold for this difference between small and large islands is unknown. Furthermore, while cell size and cell-cell contacts can be easily manipulated on small islands, they are harder to measure and continually monitor on larger islands. To investigate this size threshold, and to explore cell size, cell-cell contacts, and differentiation, we use a previously established simulation to plan experiments and explain results that we could not explain from experiments alone. We use five seeding densities covering three orders of magnitude over 25-500 µm diameter islands to examine markers of proliferation and differentiation in bone marrow-derived mesenchymal cells (cell line). We show that osteogenic markers are most accurately described as a function of confluence for larger islands, but a function of time for smaller islands. We further show, using results of the simulation, that cell size and cell-cell contacts are also related to confluence on larger islands, but only cell-cell contacts are related to confluence on small islands. This study uses simulations to explain experimental results that could not be explained from experiments alone. Together, the simulations and experiments in this study show different differentiation patterns on large and small islands, and this simulation may be useful in planning future studies related to this study.


Asunto(s)
Osteogénesis , Diferenciación Celular , Línea Celular , Células Cultivadas
3.
Dev Biol ; 442(1): 87-100, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29885287

RESUMEN

The hypothalamic anteroventral periventricular nucleus (AVPV) is the major regulator of reproductive function within the hypothalamic-pituitary-gonadal (HPG) axis. Despite an understanding of the function of neuronal subtypes within the AVPV, little is known about the molecular mechanisms regulating their development. Previous work from our laboratory has demonstrated that Notch signaling is required in progenitor cell maintenance and formation of kisspeptin neurons of the arcuate nucleus (ARC) while simultaneously restraining POMC neuron number. Based on these findings, we hypothesized that the Notch signaling pathway may act similarly in the AVPV by promoting development of kisspeptin neurons at the expense of other neuronal subtypes. To address this hypothesis, we utilized a genetic mouse model with a conditional loss of Rbpj in Nkx2.1 expressing cells (Rbpj cKO). We noted an increase in cellular proliferation, as marked by Ki-67, in the hypothalamic ventricular zone (HVZ) in Rbpj cKO mice at E13.5. This corresponded to an increase in general neurogenesis and more TH-positive neurons. Additionally, an increase in OLIG2-positive early oligodendrocytic precursor cells was observed at postnatal day 0 in Rbpj cKO mice. By 5 weeks of age in Rbpj cKO mice, TH-positive cells were readily detected in the AVPV but few kisspeptin neurons were present. To elucidate the direct effects of Notch signaling on neuron and glia differentiation, an in vitro primary hypothalamic neurosphere assay was employed. We demonstrated that treatment with the chemical Notch inhibitor DAPT increased mKi67 and Olig2 mRNA expression while decreasing astroglial Gfap expression, suggesting Notch signaling regulates both proliferation and early glial fate decisions. A modest increase in expression of TH in both the cell soma and neurite extensions was observed after extended culture, suggesting that inhibition of Notch signaling alone is enough to bias progenitors towards a dopaminergic fate. Together, these data suggest that Notch signaling restricts early cellular proliferation and differentiation of neurons and oligodendrocytes both in vivo and in vitro and acts as a fate selector of kisspeptin neurons.


Asunto(s)
Hipotálamo Anterior/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Receptores Notch/fisiología , Animales , Núcleo Hipotalámico Anterior/metabolismo , Núcleo Arqueado del Hipotálamo/citología , Diferenciación Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Femenino , Hipotálamo/metabolismo , Hipotálamo Anterior/crecimiento & desarrollo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Kisspeptinas/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores Notch/genética , Transducción de Señal/fisiología
4.
Bioconjug Chem ; 29(8): 2846-2854, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30032613

RESUMEN

Cell labeling and tracking methodologies can play an important role in experiments aimed at understanding biological systems. However, many current cell labeling and tracking techniques have limitations that preclude their use in a variety of multiplexed and high-throughput applications that could best represent the heterogeneity and combinatorial complexity present in physiologic contexts. Here, we demonstrate an approach for labeling, tracking, and quantifying cells using double-stranded DNA barcodes. These barcodes are introduced to the outside of the cell membrane, giving the labeled cells a unique identifier. This approach is compatible with flow cytometric and PCR-based identification and relative quantification of the presence of barcode-labeled cells. Further, utilizing this strategy, we demonstrate the capacity for sorting and enrichment of barcoded cells from a bulk population. In addition, we illustrate the design and utility of a range of orthogonal barcode sequences, which can enable the use of multiple independent barcodes to track, sort, and enrich multiple cell types and/or cells receiving distinct treatments from a pooled sample. Overall, this method of labeling cells has the potential to track multiple populations of cells in both high-throughput in vitro and physiologic in vivo settings.


Asunto(s)
Química Clic , Código de Barras del ADN Taxonómico , ADN/química , Células A549 , Separación Celular , Citometría de Flujo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Reacción en Cadena de la Polimerasa
5.
Drug Metab Dispos ; 46(11): 1626-1637, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30135245

RESUMEN

Metabolism in the liver often determines the overall clearance rates of many pharmaceuticals. Furthermore, induction or inhibition of the liver drug metabolism enzymes by perpetrator drugs can influence the metabolism of victim drugs (drug-drug interactions). Therefore, determining liver-drug interactions is critical during preclinical drug development. Unfortunately, studies in animals are often of limited value because of significant differences in the metabolic pathways of the liver across different species. To mitigate such limitations, the pharmaceutical industry uses a continuum of human liver models, ranging from microsomes to transfected cell lines and cultures of primary human hepatocytes (PHHs). Of these models, PHHs provide a balance of high-throughput testing capabilities together with a physiologically relevant cell type that exhibits all the characteristic enzymes, cofactors, and transporters. However, PHH monocultures display a rapid decline in metabolic capacity. Consequently, bioengineers have developed several tools, such as cellular microarrays, micropatterned cocultures, self-assembled and bioprinted spheroids, and perfusion devices, to enhance and stabilize PHH functions for ≥2 weeks. Many of these platforms have been validated for drug studies, whereas some have been adapted to include liver nonparenchymal cells that can influence hepatic drug metabolism in health and disease. Here, we focus on the design features of such platforms and their representative drug metabolism validation datasets, while discussing emerging trends. Overall, the use of engineered human liver platforms in the pharmaceutical industry has been steadily rising over the last 10 years, and we anticipate that these platforms will become an integral part of drug development with continued commercialization and validation for routine screening use.


Asunto(s)
Hepatocitos/metabolismo , Inactivación Metabólica/fisiología , Hígado/metabolismo , Preparaciones Farmacéuticas/metabolismo , Bioingeniería/métodos , Técnicas de Cocultivo/métodos , Interacciones Farmacológicas/fisiología , Humanos , Tasa de Depuración Metabólica/fisiología , Redes y Vías Metabólicas/fisiología
6.
Bioeng Transl Med ; 9(3): e10627, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38818120

RESUMEN

Cellular phenotypes and functional responses are modulated by the signals present in their microenvironment, including extracellular matrix (ECM) proteins, tissue mechanical properties, soluble signals and nutrients, and cell-cell interactions. To better recapitulate and analyze these complex signals within the framework of more physiologically relevant culture models, high throughput culture platforms can be transformative. High throughput methodologies enable scientists to extract increasingly robust and broad datasets from individual experiments, screen large numbers of conditions for potential hits, better qualify and predict responses for preclinical applications, and reduce reliance on animal studies. High throughput cell culture systems require uniformity, assay miniaturization, specific target identification, and process simplification. In this review, we detail the various techniques that researchers have used to face these challenges and explore cellular responses in a high throughput manner. We highlight several common approaches including two-dimensional multiwell microplates, microarrays, and microfluidic cell culture systems as well as unencapsulated and encapsulated three-dimensional high throughput cell culture systems, featuring multiwell microplates, micromolds, microwells, microarrays, granular hydrogels, and cell-encapsulated microgels. We also discuss current applications of these high throughput technologies, namely stem cell sourcing, drug discovery and predictive toxicology, and personalized medicine, along with emerging opportunities and future impact areas.

7.
Adv Sci (Weinh) ; 11(15): e2303128, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38348560

RESUMEN

Nonalcoholic fatty liver disease affects 30% of the United States population and its progression can lead to nonalcoholic steatohepatitis (NASH), and increased risks for cirrhosis and hepatocellular carcinoma. NASH is characterized by a highly heterogeneous liver microenvironment created by the fibrotic activity of hepatic stellate cells (HSCs). While HSCs have been widely studied in 2D, further advancements in physiologically relevant 3D culture platforms for the in vitro modeling of these heterogeneous environments are needed. In this study, the use of stiffness-variable, extracellular matrix (ECM) protein-conjugated polyethylene glycol microgels as 3D cell culture scaffolds to modulate HSC activation is demonstrated. These microgels as a high throughput ECM screening system to identify HSC matrix remodeling and metabolic activities in distinct heterogeneous microenvironmental conditions are further employed. The 6 kPa fibronectin microgels are shown to significantly increase HSC matrix remodeling and metabolic activities in single or multiple-component microenvironments. Overall, heterogeneous microenvironments consisting of multiple distinct ECM microgels promoted a decrease in HSC matrix remodeling and metabolic activities compared to homogeneous microenvironments. The study envisions this ECM screening platform being adapted to a broad number of cell types to aid the identification of ECM microenvironments that best recapitulate the desired phenotype, differentiation, or drug efficacy.


Asunto(s)
Neoplasias Hepáticas , Microgeles , Enfermedad del Hígado Graso no Alcohólico , Humanos , Células Estrelladas Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fibrosis , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral
8.
Adv Healthc Mater ; 13(12): e2303928, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38291861

RESUMEN

Chirality is an intrinsic cellular property that describes cell polarization biases along the left-right axis, apicobasal axis, or front-rear axes. Cell chirality plays a significant role in the arrangement of organs in the body as well as in the orientation of organelles, cytoskeletons, and cells. Vascular networks within the endometrium, the mucosal inner lining of the uterus, commonly display spiral architectures that rapidly form across the menstrual cycle. Herein, the role of endometrial-relevant extracellular matrix stiffness, composition, and soluble signals on endometrial endothelial cell chirality is systematically examined using a high-throughput microarray. Endometrial endothelial cells display marked patterns of chirality as individual cells and as cohorts in response to substrate stiffness and environmental cues. Vascular networks formed from endometrial endothelial cells also display shifts in chirality as a function of exogenous hormones. Changes in cellular-scale chirality correlate with changes in vascular network parameters, suggesting a critical role for cellular chirality in directing endometrial vessel network organization.


Asunto(s)
Endometrio , Células Endoteliales , Endometrio/citología , Endometrio/irrigación sanguínea , Endometrio/metabolismo , Humanos , Femenino , Células Endoteliales/citología , Células Endoteliales/metabolismo , Polaridad Celular/fisiología , Microvasos/citología , Microvasos/fisiología , Matriz Extracelular/metabolismo , Células Cultivadas
9.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352310

RESUMEN

The trabecular meshwork (TM) tissue plays a crucial role in maintaining intraocular pressure (IOP) homeostasis. Increased TM contractility and stiffness are directly correlated with elevated IOP. Although cholesterol is known to be a determinant of glaucoma occurrence and elevated IOP, the underlying mechanisms remain elusive. In this study, we used human TM (HTM) cells to unravel the effects of cholesterol on TM stiffness. We achieved this by performing acute cholesterol depletion with Methyl-ß-cyclodextrin (MßCD) and cholesterol enrichment/replenishment with MßCD cholesterol complex (CHOL). Interestingly, cholesterol depletion triggered notable actin depolymerization and decreased focal adhesion formation, while enrichment/replenishment promoted actin polymerization, requiring the presence of actin monomers. Using a specific reporter of phosphatidylinositol 4,5-bisphosphate (PIP2), we demonstrated that cholesterol depletion decreases PIP2 levels on the cell membrane, whereas enrichment increases them. Given the critical role of PIP2 in actin remodeling and focal adhesion formation, we postulate that cholesterol regulates actin dynamics by modulating PIP2 levels on the membrane. Furthermore, we showed that cholesterol levels regulate integrin α5ß1 and αVß3 distribution and activation, subsequently altering cell-extracellular matrix (ECM) interactions. Notably, the depletion of cholesterol, as a major lipid constituent of the cell membrane, led to a decrease in HTM cell membrane tension, which was reversed upon cholesterol replenishment. Overall, our systematic exploration of cholesterol modulation on TM stiffness highlights the critical importance of maintaining appropriate membrane and cellular cholesterol levels for achieving IOP homeostasis.

10.
ACS Biomater Sci Eng ; 9(5): 2317-2328, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37070831

RESUMEN

Intercellular communication through secreted proteins is necessary in essential processes such as embryo and limb development, disease progression, and immune responses. There exist many techniques to study bulk solution protein concentrations, but there is a limited set of tools to study the concentrations of cell-secreted proteins in situ within diverse cell platforms while retaining spatial information. In this study, we have developed a microgel system that is able to quantitatively measure the cell-secreted protein concentration within defined three-dimensional culture configurations with single-cell spatial resolution, called µGeLISA (microgel-linked immunosorbent assay). This system, which is based on the surface modification of polyethylene glycol microgels, was able to detect interleukin 6 (IL-6) concentrations of 2.21-21.86 ng/mL. Microgels were also able to detect cell spheroid-secreted IL-6 and distinguish between low- and high-secreting single cells. The system was also adapted to measure the concentration of cell-secreted matrix metalloproteinase-2 (MMP-2). µGeLISA represents a highly versatile system with a straightforward fabrication process that can be adapted toward the detection of secreted proteins within a diverse range of cell culture configurations.


Asunto(s)
Hidrogeles , Microgeles , Metaloproteinasa 2 de la Matriz , Interleucina-6 , Polietilenglicoles
11.
bioRxiv ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37214995

RESUMEN

Non-alcoholic fatty liver disease affects 30% of the United States population and its progression can lead to non-alcoholic steatohepatitis (NASH), which can result in cirrhosis and hepatocellular carcinoma. NASH is characterized by a highly heterogeneous liver microenvironment created by the fibrotic activity of hepatic stellate cells (HSCs). While HSCs have been widely studied in 2D, further advancements in physiologically-relevant 3D culture platforms for the in vitro modeling of these heterogeneous environments are needed. In this study, we have demonstrated the use of stiffness-variable, ECM protein-conjugated polyethylene glycol microgels as 3D cell culture scaffolds to modulate HSC activation. We further employed these microgels as a high throughput ECM screening system to identify HSC matrix remodeling and metabolic activities in distinct heterogeneous microenvironmental conditions. In particular, 6 kPa fibronectin microgels were shown to significantly increase HSC matrix remodeling and metabolic activities in single or multiple component microenvironments. Overall, heterogeneous microenvironments consisting of multiple distinct ECM microgels promoted a decrease in HSC matrix remodeling and metabolic activities compared to homogeneous microenvironments. We envision this ECM screening platform being adapted to a broad number of cell types to aid the identification of ECM microenvironments that best recapitulate the desired phenotype, differentiation, or drug efficacy.

12.
Acta Biomater ; 167: 278-292, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37343907

RESUMEN

Hepatic stellate cells (HSCs) are one of the primary drivers of liver fibrosis in non-alcoholic fatty liver disease. Although HSC activation in liver disease is associated with changes in extracellular matrix (ECM) deposition and remodeling, it remains unclear how ECM regulates the phenotypic state transitions of HSCs. Using high-throughput cellular microarrays, coupled with genome-wide ATAC and RNA sequencing within engineered ECM microenvironments, we investigated the effect of ECM and substrate stiffness on chromatin accessibility and resulting gene expression in activated primary human HSCs. Cell microarrays demonstrated the cooperative effects of stiffness and ECM composition on H3K4 and H3K9 methylation/acetylation. ATAC sequencing revealed higher chromatin accessibility in HSCs on 1kPa compared to 25kPa substrates for all ECM conditions. Gene set enrichment analysis using RNA sequencing data of HSCs in defined ECM microenvironments demonstrated higher enrichment of NAFLD and fibrosis-related genes in pre-activated HSCs on 1kPa relative to 25kPa. Overall, these findings are indicative of a microenvironmental adaptation response in HSCs, and the acquisition of a persistent activation state. Combined ATAC/RNA sequencing analyses enabled identification of candidate regulatory factors, including HSD11B1 and CEBPb. siRNA-mediated knockdown of HSD11b1 and CEBPb demonstrated microenvironmental controlled reduction in fibrogenic markers in HSCs. STATEMENT OF SIGNIFICANCE: Hepatic stellate cells (HSCs) are one of the primary drivers of liver fibrosis in non-alcoholic fatty liver disease. Although HSC activation in liver disease is associated with changes in extracellular matrix (ECM) deposition and remodeling, it remains unclear how ECM regulates the phenotypic state transitions of HSCs. Using high-throughput cellular microarrays, coupled with genome-wide ATAC and RNA sequencing within engineered ECM microenvironments, we investigated the effect of ECM and substrate stiffness on chromatin accessibility and resulting gene expression in activated primary human HSCs. Overall, these findings were indicative of a microenvironmental adaptation response in HSCs, and the acquisition of a persistent activation state. Combined ATAC/RNA sequencing analyses enabled identification of candidate regulatory factors, including HSD11B1 and CEBPb. siRNA-mediated knockdown of HSD11b1 and CEBPb demonstrated microenvironmental controlled reduction in fibrogenic markers in HSCs.


Asunto(s)
Cromatina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Cromatina/genética , Cromatina/metabolismo , Células Estrelladas Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Cirrosis Hepática/metabolismo , Matriz Extracelular/metabolismo , Expresión Génica , ARN Interferente Pequeño/farmacología , Hígado
13.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961315

RESUMEN

Chirality is an intrinsic cellular property that describes cell polarization biases along the left-right axis, apicobasal axis, or front-rear axes. Cell chirality plays a significant role in the arrangement of organs in the body as well as the orientation of organelles, cytoskeletons, and cells. Vascular networks within the endometrium, the mucosal inner lining of the uterus, commonly display spiral architectures that rapidly form across the menstrual cycle. Herein, we systematically examine the role of endometrial-relevant extracellular matrix stiffness, composition, and soluble signals on endometrial endothelial cell chirality using a high-throughput microarray. Endometrial endothelial cells display marked patterns of chirality as individual cells and as cohorts in response to substrate stiffness and environmental cues. Vascular networks formed from endometrial endothelial cells also display shifts in chirality as a function of exogenous hormones. Changes in cellular-scale chirality correlate with changes in vascular network parameters, suggesting a critical role for cellular chirality in directing endometrial vessel network organization.

14.
Acta Biomater ; 153: 216-230, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115650

RESUMEN

In vitro human liver models are essential for drug screening, disease modeling, and cell-based therapies. Induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iHeps) mitigate sourcing limitations of primary human hepatocytes (PHHs) and enable precision medicine; however, current protocols yield iHeps with very low differentiated functions. The composition and stiffness of liver's extracellular matrix (ECM) cooperatively regulate hepatic phenotype in vivo, but such effects on iHeps remain unelucidated. Here, we utilized ECM microarrays and high content imaging to assess human iHep attachment and functions on ten major liver ECM proteins in single and two-way combinations robotically spotted onto polyacrylamide gels of liver-like stiffnesses; microarray findings were validated using hydrogel-conjugated multiwell plates. Collagen-IV supported higher iHep attachment than collagen-I over 2 weeks on 1 kPa, while laminin and its combinations with collagen-III, fibronectin, tenascin C, or hyaluronic acid led to both high iHep attachment and differentiated functions; laminin and its combination with tenascin or fibronectin led to similar albumin expression in iHeps and PHHs. Additionally, several collagen-IV-, laminin-, fibronectin-, and collagen-V-containing combinations on 1 kPa led to similar or higher CYP3A4 staining in iHeps than PHHs. Lastly, collagen-I or -III mixed with laminin, collagen-IV mixed with lumican, and collagen-V mixed with fibronectin led to high and stable functional output (albumin/urea secretions; CYP1A2/2C9/3A4 activities) in iHep cultures versus declining PHH numbers/functions for 3 weeks within multiwell plates containing 1 kPa hydrogels. Ultimately, these platforms can help elucidate ECM's role in liver diseases and serve as building blocks of engineered tissues for applications. STATEMENT OF SIGNIFICANCE: We utilized high-throughput extracellular matrix (ECM) microarrays and high content imaging to assess the attachment and differentiated functions of iPSC-derived human hepatocyte-like cells (iHep) on major liver ECM protein combinations spotted onto polyacrylamide gels of liver-like stiffnesses. We observed that iHep responses are regulated in unexpected ways via the cooperation between ECM stiffness and protein composition. Using this approach, we induced mature functions in iHeps on substrates of physiological stiffness and select ECM coatings at higher levels over 3+ weeks than analogous primary human hepatocyte cultures, which is useful for building platforms for drug screening, disease modeling, and regenerative medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Fibronectinas/metabolismo , Laminina/farmacología , Laminina/metabolismo , Hepatocitos/metabolismo , Matriz Extracelular/metabolismo , Colágeno Tipo I/metabolismo , Colágeno/metabolismo , Fenotipo , Hidrogeles/farmacología , Albúminas/metabolismo
15.
ACS Biomater Sci Eng ; 8(9): 3819-3830, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35994527

RESUMEN

The endometrium undergoes profound changes in tissue architecture and composition, both during the menstrual cycle as well as in the context of pregnancy. Dynamic remodeling processes of the endometrial extracellular matrix (ECM) are a major element of endometrial homeostasis, including changes across the menstrual cycle. A critical element of this tissue microenvironment is the endometrial basement membrane, a specialized layer of proteins that separates the endometrial epithelium from the underlying endometrial ECM. Bioengineering models of the endometrial microenvironment that present an appropriate endometrial ECM and basement membrane may provide an improved environment to study endometrial epithelial cell (EEC) function. Here, we exploit a tiered approach using two-dimensional high-throughput microarrays and three-dimensional gelatin hydrogels to define patterns of EEC attachment and cytokeratin 18 (CK18) expression in response to combinations of endometrial basement membrane proteins. We identify combinations (collagen IV + tenascin C; collagen I + collagen III; hyaluronic acid + tenascin C; collagen V; collagen V + hyaluronic acid; collagen III; and collagen I) that facilitate increased EEC attachment, increased CK18 intensity, or both. We also identify significant EEC mediated remodeling of the methacrylamide-functionalized gelatin matrix environment via analysis of nascent protein deposition. Together, we report efforts to tailor the localization of basement membrane-associated proteins and proteoglycans in order to investigate tissue-engineered models of the endometrial microenvironment.


Asunto(s)
Gelatina , Hidrogeles , Colágeno/metabolismo , Endometrio/metabolismo , Células Epiteliales , Matriz Extracelular/metabolismo , Femenino , Gelatina/metabolismo , Humanos , Ácido Hialurónico/metabolismo , Hidrogeles/metabolismo , Queratina-18/metabolismo , Embarazo , Tenascina/metabolismo
16.
APL Bioeng ; 6(4): 046102, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36345318

RESUMEN

Fibrosis is one of the hallmarks of chronic liver disease and is associated with aberrant wound healing. Changes in the composition of the liver microenvironment during fibrosis result in a complex crosstalk of extracellular cues that promote altered behaviors in the cell types that comprise the liver sinusoid, particularly liver sinusoidal endothelial cells (LSECs). Recently, it has been observed that LSECs may sustain injury before other fibrogenesis-associated cells of the sinusoid, implicating LSECs as key actors in the fibrotic cascade. A high-throughput cellular microarray platform was used to deconstruct the collective influences of defined combinations of extracellular matrix (ECM) proteins, substrate stiffness, and soluble factors on primary human LSEC phenotype in vitro. We observed remarkable heterogeneity in LSEC phenotype as a function of stiffness, ECM, and soluble factor context. LYVE-1 and CD-31 expressions were highest on 1 kPa substrates, and the VE-cadherin junction localization was highest on 25 kPa substrates. Also, LSECs formed distinct spatial patterns of LYVE-1 expression, with LYVE-1+ cells observed in the center of multicellular domains, and pattern size regulated by microenvironmental context. ECM composition also influenced a substantial dynamic range of expression levels for all markers, and the collagen type IV was observed to promote elevated expressions of LYVE-1, VE-cadherin, and CD-31. These studies highlight key microenvironmental regulators of LSEC phenotype and reveal unique spatial patterning of the sinusoidal marker LYVE-1. Furthermore, these data provide insight into understanding more precisely how LSECs respond to fibrotic microenvironments, which will aid drug development and identification of targets to treat liver fibrosis.

17.
Commun Biol ; 5(1): 1073, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207581

RESUMEN

Controlled in vitro multicellular culture systems with defined biophysical microenvironment have been used to elucidate the role of Notch signaling in the spatiotemporal regulation of stem and progenitor cell differentiation. In addition, computational models incorporating features of Notch ligand-receptor interactions have provided important insights into Notch pathway signaling dynamics. However, the mechanistic relationship between Notch-mediated intercellular signaling and cooperative microenvironmental cues is less clear. Here, liver progenitor cell differentiation patterning was used as a model to systematically evaluate the complex interplay of cellular mechanics and Notch signaling along with identifying combinatorial mechanisms guiding progenitor fate. We present an integrated approach that pairs a computational intercellular signaling model with defined microscale culture configurations provided within a cell microarray platform. Specifically, the cell microarray-based experiments were used to validate and optimize parameters of the intercellular Notch signaling model. This model incorporated the experimentally established multicellular dimensions of the cellular microarray domains, mechanical stress-related activation parameters, and distinct Notch receptor-ligand interactions based on the roles of the Notch ligands Jagged-1 and Delta-like-1. Overall, these studies demonstrate the spatial control of mechanotransduction-associated components, key growth factor and Notch signaling interactions, and point towards a possible role of E-Cadherin in translating intercellular mechanical gradients to downstream Notch signaling.


Asunto(s)
Mecanotransducción Celular , Receptores Notch , Cadherinas/metabolismo , Diferenciación Celular , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1/metabolismo , Ligandos , Hígado/metabolismo , Receptores Notch/metabolismo
18.
Acta Biomater ; 138: 240-253, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34800715

RESUMEN

Liver fibrosis is a common feature of progressive liver disease and is manifested as a dynamic series of alterations in both the biochemical and biophysical properties of the liver. Hepatic stellate cells (HSCs) reside within the perisinusoidal space of the liver sinusoid and are one of the main drivers of liver fibrosis, yet it remains unclear how changes to the sinusoidal microenvironment impact HSC phenotype in the context of liver fibrosis. Cellular microarrays were used to examine and deconstruct the impacts of bio-chemo-mechanical changes on activated HSCs in vitro. Extracellular matrix (ECM) composition and stiffness were found to act individually and in combination to regulate HSC fibrogenic phenotype and proliferation. Hyaluronic acid and collagen III promoted elevated collagen I expression while collagen IV mediated a decrease. Previously activated HSCs exhibited reduced lysyl oxidase (Lox) expression as array substrate stiffness increased, with less dependence on ECM composition. Collagens III and IV increased HSC proliferation, whereas hyaluronic acid had the opposite effect. Meta-analysis performed on these data revealed distinct phenotypic clusters (e.g. low fibrogenesis/high proliferation) as a direct function of their microenvironmental composition. Notably, soft microenvironments mimicking healthy tissue (1 kPa), promoted higher levels of intracellular collagen I and Lox expression in activated HSCs, compared to stiff microenvironments mimicking fibrotic tissue (25 kPa). Collectively, these data suggest potential HSC functional adaptations in response to specific bio-chemo-mechanical changes relevant towards the development of therapeutic interventions. These findings also underscore the importance of the microenvironment when interrogating HSC behavior in healthy, disease, and treatment settings. STATEMENT OF SIGNIFICANCE: In this work we utilized high-throughput cellular microarray technology to systematically interrogate the complex interactions between HSCs and their microenvironment in the context of liver fibrosis. We observed that HSC phenotype is regulated by ECM composition and stiffness, and that these phenotypes can be classified into distinct clusters based on their microenvironmental context. Moreover, the range of these phenotypic responses to microenvironmental stimuli is substantial and a direct consequence of the combinatorial pairing of ECM protein and stiffness signals. We also observed a novel role for microenvironmental context in affecting HSC responses to potential fibrosis therapeutics.


Asunto(s)
Células Estrelladas Hepáticas , Transducción de Señal , Proliferación Celular , Células Estrelladas Hepáticas/patología , Humanos , Hígado/patología , Cirrosis Hepática/patología , Fenotipo
19.
Adv Mater Interfaces ; 8(22)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-35111564

RESUMEN

How the liver's extracellular matrix (ECM) protein composition and stiffness cooperatively regulate primary human hepatocyte (PHH) phenotype is unelucidated. Here, we utilize protein microarrays and high content imaging with single-cell resolution to assess PHH attachment/functions on 10 major liver ECM proteins in single and two-way combinations robotically spotted onto polyacrylamide gels of 1 kPa or 25 kPa stiffness. Albumin, cytochrome-P450 3A4 (CYP3A4), and hepatocyte nuclear factor alpha (HNF4α) positively correlate with each other and cell density on both stiffnesses. The 25 kPa stiffness supports higher average albumin and HNF4α expression after 14 days, while ECM protein composition significantly modulates PHH functions across both stiffnesses. Unlike previous rodent data, PHH functions are highest only when collagen-IV or fibronectin are mixed with specific proteins, whereas non-collagenous proteins without mixed collagens downregulate functions. Combination of collagen-IV and hyaluronic acid retains high CYP3A4 on 1 kPa, whereas collagens-IV and -V better retain HNF4α on 25 kPa over 14 days. Adapting ECM conditions to 96-well plates containing conjugated hydrogels reveals novel regulation of other functions (urea, CYP1A2/2A6/2C9) and drug-mediated CYP induction by the ECM protein composition/stiffness. This high-throughput pipeline can be adapted to elucidate ECM's role in liver diseases and facilitate optimization of engineered tissues.

20.
Adv Healthc Mater ; 10(12): e2100223, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33890430

RESUMEN

3D microenvironments provide a unique opportunity to investigate the impact of intrinsic mechanical signaling on progenitor cell differentiation. Using a hydrogel-based microwell platform, arrays of 3D, multicellular microtissues in constrained geometries, including toroids and cylinders are produced. These generated distinct mechanical profiles to investigate the impact of geometry and stress on early liver progenitor cell fate using a model liver development system. Image segmentation allows the tracking of individual cell fate and the characterization of distinct patterning of hepatocytic makers to the outer shell of the microtissues, and the exclusion from the inner diameter surface of the toroids. Biliary markers are distributed throughout the interior regions of micropatterned tissues and are increased in toroidal tissues when compared with those in cylindrical tissues. Finite element models of predicted stress distributions, combined with mechanical measurements, demonstrates that intercellular tension correlates with increased hepatocytic fate, while compression correlates with decreased hepatocytic and increased biliary fate. This system, which integrates microfabrication, imaging, mechanical modeling, and quantitative analysis, demonstrates how microtissue geometry can drive patterning of mechanical stresses that regulate cell differentiation trajectories. This approach may serve as a platform for further investigation of signaling mechanisms in the liver and other developmental systems.


Asunto(s)
Células Madre , Ingeniería de Tejidos , Diferenciación Celular , Hígado , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA