Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Europace ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177260

RESUMEN

BACKGROUND AND AIMS: The effective refractory period (ERP) is one of the main electrophysiological properties governing arrhythmia, yet ERP personalisation is rarely performed when creating patient-specific computer models of the atria to inform clinical decision-making. This study evaluates the impact of integrating clinical ERP measurements into personalised in silico models on arrhythmia vulnerability. METHODS: Clinical ERP measurements were obtained in seven patients from multiple locations in the atria. Atrial geometries from the electroanatomical mapping system were used to generate personalised anatomical atrial models. The Courtemanche cellular model was adjusted to reproduce patientspecific ERP. Four modelling approaches were compared: homogeneous (A), heterogeneous (B), regional (C), and continuous (D) ERP distributions. Non-personalised approaches (A, B) were based on literature data, while personalised approaches (C, D) were based on patient measurements. Modelling effects were assessed on arrhythmia vulnerability and tachycardia cycle length, with sensitivity analysis on ERP measurement uncertainty. RESULTS: Mean vulnerability was 3.4±4.0%, 7.7±3.4%, 9.0±5.1%, 7.0±3.6% for scenarios A to D, respectively. Mean tachycardia cycle length was 167.1±12.6 ms, 158.4±27.5 ms, 265.2±39.9 ms, and 285.9±77.3 ms for scenarios A to D, respectively. Incorporating perturbations to the measured ERP in the range of 2, 5, 10, 20, and 50ms changed the vulnerability of the model to 5.8±2.7%, 6.1±3.5%, 6.9±3.7%, 5.2±3.5%, 9.7±10.0% respectively. CONCLUSION: Increased ERP dispersion had a greater effect on reentry dynamics than on vulnerability. Inducibility was higher in personalised scenarios compared to scenarios with uniformly reduced ERP; however, this effect was reversed when incorporating fibrosis informed by low voltage areas.ERP measurement uncertainty up to 20 ms slightly influenced vulnerability. Electrophysiological personalisation of atrial in silico models appears essential and requires confirmation in larger cohorts.

2.
Europace ; 25(1): 211-222, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35943361

RESUMEN

AIMS: The long-term success rate of ablation therapy is still sub-optimal in patients with persistent atrial fibrillation (AF), mostly due to arrhythmia recurrence originating from arrhythmogenic sites outside the pulmonary veins. Computational modelling provides a framework to integrate and augment clinical data, potentially enabling the patient-specific identification of AF mechanisms and of the optimal ablation sites. We developed a technology to tailor ablations in anatomical and functional digital atrial twins of patients with persistent AF aiming to identify the most successful ablation strategy. METHODS AND RESULTS: Twenty-nine patient-specific computational models integrating clinical information from tomographic imaging and electro-anatomical activation time and voltage maps were generated. Areas sustaining AF were identified by a personalized induction protocol at multiple locations. State-of-the-art anatomical and substrate ablation strategies were compared with our proposed Personalized Ablation Lines (PersonAL) plan, which consists of iteratively targeting emergent high dominant frequency (HDF) regions, to identify the optimal ablation strategy. Localized ablations were connected to the closest non-conductive barrier to prevent recurrence of AF or atrial tachycardia. The first application of the HDF strategy had a success of >98% and isolated only 5-6% of the left atrial myocardium. In contrast, conventional ablation strategies targeting anatomical or structural substrate resulted in isolation of up to 20% of left atrial myocardium. After a second iteration of the HDF strategy, no further arrhythmia episode could be induced in any of the patient-specific models. CONCLUSION: The novel PersonAL in silico technology allows to unveil all AF-perpetuating areas and personalize ablation by leveraging atrial digital twins.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Venas Pulmonares , Taquicardia Supraventricular , Humanos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Resultado del Tratamiento , Atrios Cardíacos/cirugía , Simulación por Computador , Venas Pulmonares/cirugía , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Recurrencia
3.
Europace ; 23(23 Suppl 1): i133-i142, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33751084

RESUMEN

AIMS: The treatment of atrial fibrillation beyond pulmonary vein isolation has remained an unsolved challenge. Targeting regions identified by different substrate mapping approaches for ablation resulted in ambiguous outcomes. With the effective refractory period being a fundamental prerequisite for the maintenance of fibrillatory conduction, this study aims at estimating the effective refractory period with clinically available measurements. METHODS AND RESULTS: A set of 240 simulations in a spherical model of the left atrium with varying model initialization, combination of cellular refractory properties, and size of a region of lowered effective refractory period was implemented to analyse the capabilities and limitations of cycle length mapping. The minimum observed cycle length and the 25% quantile were compared to the underlying effective refractory period. The density of phase singularities was used as a measure for the complexity of the excitation pattern. Finally, we employed the method in a clinical test of concept including five patients. Areas of lowered effective refractory period could be distinguished from their surroundings in simulated scenarios with successfully induced multi-wavelet re-entry. Larger areas and higher gradients in effective refractory period as well as complex activation patterns favour the method. The 25% quantile of cycle lengths in patients with persistent atrial fibrillation was found to range from 85 to 190 ms. CONCLUSION: Cycle length mapping is capable of highlighting regions of pathologic refractory properties. In combination with complementary substrate mapping approaches, the method fosters confidence to enhance the treatment of atrial fibrillation beyond pulmonary vein isolation particularly in patients with complex activation patterns.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Venas Pulmonares , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Simulación por Computador , Atrios Cardíacos , Frecuencia Cardíaca , Humanos , Venas Pulmonares/cirugía
4.
Polymers (Basel) ; 15(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112090

RESUMEN

The feasibility of thermally-induced phase separation and crystallization for the production of semi-crystalline polyetherimide (PEI) microparticles from an amorphous feedstock has been reported recently. Here, we investigate process parameter dependencies for designing and control of particle properties. A stirred autoclave was used to extend the process controllability, as the applied process parameters, e.g., stirring speed and cooling rate, were adjusted. By increasing the stirring speed, the particle size distribution was shifted to larger values (correlation factor ρ = 0.77). Although, the enhanced droplet breakup, induced by the higher stirring speed, led to the formation of smaller particles (ρ = -0.68), broadening the particle size distribution. The cooling rate showed a significant influence on the melting temperature, reducing it with a correlation factor of ρ = -0.77, as confirmed by differential scanning calorimetry. Lower cooling rates led to larger crystalline structures and enhanced the degree of crystallinity. The polymer concentration mainly affected the resulting enthalpy of fusion, as an increased polymer fraction enhanced the latter (correlation factor ρ = 0.96). In addition, the circularity of the particles was positively correlated to the polymer fraction (ρ = 0.88). The structure assessed via X-ray diffraction, was not affected.

5.
Comput Med Imaging Graph ; 108: 102265, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37392493

RESUMEN

Digital twins of patients' hearts are a promising tool to assess arrhythmia vulnerability and to personalize therapy. However, the process of building personalized computational models can be challenging and requires a high level of human interaction. We propose a patient-specific Augmented Atria generation pipeline (AugmentA) as a highly automated framework which, starting from clinical geometrical data, provides ready-to-use atrial personalized computational models. AugmentA identifies and labels atrial orifices using only one reference point per atrium. If the user chooses to fit a statistical shape model to the input geometry, it is first rigidly aligned with the given mean shape before a non-rigid fitting procedure is applied. AugmentA automatically generates the fiber orientation and finds local conduction velocities by minimizing the error between the simulated and clinical local activation time (LAT) map. The pipeline was tested on a cohort of 29 patients on both segmented magnetic resonance images (MRI) and electroanatomical maps of the left atrium. Moreover, the pipeline was applied to a bi-atrial volumetric mesh derived from MRI. The pipeline robustly integrated fiber orientation and anatomical region annotations in 38.4 ± 5.7 s. In conclusion, AugmentA offers an automated and comprehensive pipeline delivering atrial digital twins from clinical data in procedural time.


Asunto(s)
Fibrilación Atrial , Humanos , Atrios Cardíacos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
6.
Comput Methods Programs Biomed ; 231: 107406, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36787660

RESUMEN

BACKGROUND AND OBJECTIVE: Planning the optimal ablation strategy for the treatment of complex atrial tachycardia (CAT) is a time consuming task and is error-prone. Recently, directed network mapping, a technology based on graph theory, proved to efficiently identify CAT based solely on data of clinical interventions. Briefly, a directed network was used to model the atrial electrical propagation and reentrant activities were identified by looking for closed-loop paths in the network. In this study, we propose a recommender system, built as an optimization problem, able to suggest the optimal ablation strategy for the treatment of CAT. METHODS: The optimization problem modeled the optimal ablation strategy as that one interrupting all reentrant mechanisms while minimizing the ablated atrial surface. The problem was designed on top of directed network mapping. Considering the exponential complexity of finding the optimal solution of the problem, we introduced a heuristic algorithm with polynomial complexity. The proposed algorithm was applied to the data of i) 6 simulated scenarios including both left and right atrial flutter; and ii) 10 subjects that underwent a clinical routine. RESULTS: The recommender system suggested the optimal strategy in 4 out of 6 simulated scenarios. On clinical data, the recommended ablation lines were found satisfactory on 67% of the cases according to the clinician's opinion, while they were correctly located in 89%. The algorithm made use of only data collected during mapping and was able to process them nearly real-time. CONCLUSIONS: The first recommender system for the identification of the optimal ablation lines for CAT, based solely on the data collected during the intervention, is presented. The study may open up interesting scenarios for the application of graph theory for the treatment of CAT.


Asunto(s)
Aleteo Atrial , Ablación por Catéter , Taquicardia Supraventricular , Humanos , Aleteo Atrial/cirugía , Atrios Cardíacos/cirugía , Resultado del Tratamiento
7.
IEEE Trans Biomed Eng ; 70(2): 533-543, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35925848

RESUMEN

BACKGROUND: Electrical impedance measurements have become an accepted tool for monitoring intracardiac radio frequency ablation. Recently, the long-established generator impedance was joined by novel local impedance measurement capabilities with all electrical circuit terminals being accommodated within the catheter. OBJECTIVE: This work aims at in silico quantification of distinct influencing factors that have remained challenges due to the lack of ground truth knowledge and the superposition of effects in clinical settings. METHODS: We introduced a highly detailed in silico model of two local impedance enabled catheters, namely IntellaNav MiFi OI and IntellaNav Stablepoint, embedded in a series of clinically relevant environments. Assigning material and frequency specific conductivities and subsequently calculating the spread of the electrical field with the finite element method yielded in silico local impedances. The in silico model was validated by comparison to in vitro measurements of standardized sodium chloride solutions. We then investigated the effect of the withdrawal of the catheter into the transseptal sheath, catheter-tissue interaction, insertion of the catheter into pulmonary veins, and catheter irrigation. RESULTS: All simulated setups were in line with in vitro experiments and in human measurements and gave detailed insight into determinants of local impedance changes as well as the relation between values measured with two different devices. CONCLUSION: The in silico environment proved to be capable of resembling clinical scenarios and quantifying local impedance changes. SIGNIFICANCE: The tool can assists the interpretation of measurements in humans and has the potential to support future catheter development.


Asunto(s)
Ablación por Catéter , Atrios Cardíacos , Humanos , Impedancia Eléctrica , Conductividad Eléctrica , Catéteres , Simulación por Computador , Ablación por Catéter/métodos
8.
J Clin Med ; 11(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35207318

RESUMEN

The treatment of atrial tachycardia following catheter ablation of atrial fibrillation is often challenging. Electrophysiological studies using high-resolution 3D mapping systems have contributed significantly to their understanding, and new ablation approaches have shown high rates of acute terminations with low recurrences for the clinical AT. However, patient populations are very heterogeneous, and long-term data of the freedom from any atrial tachycardia or any arrhythmia are still sparse. To evaluate long-term success, a unified patient population and predefined ablation strategies are preferred. In this study, we present 12-month success and mean 30 month follow-up data of catheter ablation of left atrial tachycardia. All 35 patients had a history of pulmonary vein isolation (PVI), 71% of which had a previous substrate modification. A total of 54 ATs, with a mean cycle length 297 ± 86 ms, 31 macro-reentries, and 4 localized reentries, were targeted. The ablation strategy to be used was given by the study protocol, depending on the type of reentry and the number of critical isthmuses. All available ablation strategies were included: standard (anatomical) lines, individual lines, critical isthmuses, and focal ablation. All ATs were terminated by ablation. A total of 91% terminated upon the first ablation strategy. Freedom from any AT after 12 months was 82%, and from any arrhythmia, it was 77%. The multi-procedure success after 30 months was 65% for any AT and 55% for any arrhythmia. In conclusion, individual ablation strategies based on the reentry mechanism and the number of critical isthmuses seems promising and demonstrates a high long-term clinical success. Tachycardia comprising a single critical isthmus can be ablated by critical isthmus ablation only. These patients present with the highest 12-month and long-term success rates.

9.
Front Physiol ; 12: 699291, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34290623

RESUMEN

In patients with atrial fibrillation, intracardiac electrogram signal amplitude is known to decrease with increased structural tissue remodeling, referred to as fibrosis. In addition to the isolation of the pulmonary veins, fibrotic sites are considered a suitable target for catheter ablation. However, it remains an open challenge to find fibrotic areas and to differentiate their density and transmurality. This study aims to identify the volume fraction and transmurality of fibrosis in the atrial substrate. Simulated cardiac electrograms, combined with a generalized model of clinical noise, reproduce clinically measured signals. Our hybrid dataset approach combines in silico and clinical electrograms to train a decision tree classifier to characterize the fibrotic atrial substrate. This approach captures different in vivo dynamics of the electrical propagation reflected on healthy electrogram morphology and synergistically combines it with synthetic fibrotic electrograms from in silico experiments. The machine learning algorithm was tested on five patients and compared against clinical voltage maps as a proof of concept, distinguishing non-fibrotic from fibrotic tissue and characterizing the patient's fibrotic tissue in terms of density and transmurality. The proposed approach can be used to overcome a single voltage cut-off value to identify fibrotic tissue and guide ablation targeting fibrotic areas.

10.
Front Physiol ; 12: 673047, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108887

RESUMEN

BACKGROUND: Rate-varying S1S2 stimulation protocols can be used for restitution studies to characterize atrial substrate, ionic remodeling, and atrial fibrillation risk. Clinical restitution studies with numerous patients create large amounts of these data. Thus, an automated pipeline to evaluate clinically acquired S1S2 stimulation protocol data necessitates consistent, robust, reproducible, and precise evaluation of local activation times, electrogram amplitude, and conduction velocity. Here, we present the CVAR-Seg pipeline, developed focusing on three challenges: (i) No previous knowledge of the stimulation parameters is available, thus, arbitrary protocols are supported. (ii) The pipeline remains robust under different noise conditions. (iii) The pipeline supports segmentation of atrial activities in close temporal proximity to the stimulation artifact, which is challenging due to larger amplitude and slope of the stimulus compared to the atrial activity. METHODS AND RESULTS: The S1 basic cycle length was estimated by time interval detection. Stimulation time windows were segmented by detecting synchronous peaks in different channels surpassing an amplitude threshold and identifying time intervals between detected stimuli. Elimination of the stimulation artifact by a matched filter allowed detection of local activation times in temporal proximity. A non-linear signal energy operator was used to segment periods of atrial activity. Geodesic and Euclidean inter electrode distances allowed approximation of conduction velocity. The automatic segmentation performance of the CVAR-Seg pipeline was evaluated on 37 synthetic datasets with decreasing signal-to-noise ratios. Noise was modeled by reconstructing the frequency spectrum of clinical noise. The pipeline retained a median local activation time error below a single sample (1 ms) for signal-to-noise ratios as low as 0 dB representing a high clinical noise level. As a proof of concept, the pipeline was tested on a CARTO case of a paroxysmal atrial fibrillation patient and yielded plausible restitution curves for conduction speed and amplitude. CONCLUSION: The proposed openly available CVAR-Seg pipeline promises fast, fully automated, robust, and accurate evaluations of atrial signals even with low signal-to-noise ratios. This is achieved by solving the proximity problem of stimulation and atrial activity to enable standardized evaluation without introducing human bias for large data sets.

11.
Front Physiol ; 12: 788885, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35140628

RESUMEN

The treatment of atrial fibrillation and other cardiac arrhythmias as a major cause of cardiovascular hospitalization has remained a challenge predominantly for patients with severely remodeled substrate. Individualized ablation strategies are extremely important both for pulmonary vein isolation and subsequent ablations. Current approaches to identifying arrhythmogenic regions rely on electrogram-based features such as activation time and voltage. Novel technologies now enable clinical assessment of the local impedance as tissue property. Previous studies demonstrated its use for ablation monitoring and indicated its potential to differentiate healthy substrate, scar, and pathological tissue. This study investigates the potential of local electrical impedance-based substrate mapping of the atria for human in-vivo data. The presented pipeline for impedance mapping particularly contains options for dealing with undesirable effects originating from cardiac motion, catheter motion, or proximity to other intracardiac devices. Bloodpool impedance was automatically determined as a patient-specific reference. Full-chamber, left atrial impedance maps were drawn up from interpolating the measured impedances to the atrial endocardium. Finally, the origin and magnitude of oscillations of the raw impedance recording were probed into. The most dominant reason for exclusion of impedance samples was the loss of endocardial contact. With median elevations above the bloodpool impedance between 29 and 46 Ω, the impedance within the pulmonary veins significantly exceeded the remaining atrial walls presenting median elevations above the bloodpool impedance between 16 and 20 Ω. Previous ablation lesions were distinguished from their surroundings by a significant drop in local impedance while the corresponding regions did not differ for the control group. The raw impedance was found to oscillate with median amplitudes between 6 and 17 Ω depending on the patient. Oscillations were traced back to an interplay of atrial, ventricular, and respiratory motion. In summary, local impedance measurements demonstrated their capability to distinguish pathological atrial tissue from physiological substrate. Methods to limit the influence of confounding factors that still hinder impedance mapping were presented. Measurements at different frequencies or the combination of multiple electrodes could lead to further improvement. The presented examples indicate that electrogram- and impedance-based substrate mapping have the potential to complement each other toward better patient outcomes in future.

12.
Front Physiol ; 12: 749635, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34764882

RESUMEN

Atrial flutter (AFL) is a common atrial arrhythmia typically characterized by electrical activity propagating around specific anatomical regions. It is usually treated with catheter ablation. However, the identification of rotational activities is not straightforward, and requires an intense effort during the first phase of the electrophysiological (EP) study, i.e., the mapping phase, in which an anatomical 3D model is built and electrograms (EGMs) are recorded. In this study, we modeled the electrical propagation pattern of AFL (measured during mapping) using network theory (NT), a well-known field of research from the computer science domain. The main advantage of NT is the large number of available algorithms that can efficiently analyze the network. Using directed network mapping, we employed a cycle-finding algorithm to detect all cycles in the network, resembling the main propagation pattern of AFL. The method was tested on two subjects in sinus rhythm, six in an experimental model of in-silico simulations, and 10 subjects diagnosed with AFL who underwent a catheter ablation. The algorithm correctly detected the electrical propagation of both sinus rhythm cases and in-silico simulations. Regarding the AFL cases, arrhythmia mechanisms were either totally or partially identified in most of the cases (8 out of 10), i.e., cycles around the mitral valve, tricuspid valve and figure-of-eight reentries. The other two cases presented a poor mapping quality or a major complexity related to previous ablations, large areas of fibrotic tissue, etc. Directed network mapping represents an innovative tool that showed promising results in identifying AFL mechanisms in an automatic fashion. Further investigations are needed to assess the reliability of the method in different clinical scenarios.

13.
IEEE Trans Biomed Eng ; 67(10): 2905-2915, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32070940

RESUMEN

OBJECTIVE: Unipolar intracardiac electrograms (uEGMs) measured inside the atria during electro-anatomic mapping contain diagnostic information about cardiac excitation and tissue properties. The ventricular far field (VFF) caused by ventricular depolarization compromises these signals. Current signal processing techniques require several seconds of local uEGMs to remove the VFF component and thus prolong the clinical mapping procedure. We developed an approach to remove the VFF component using data obtained during initial anatomy acquisition. METHODS: We developed two models which can approximate the spatio-temporal distribution of the VFF component based on acquired EGM data: Polynomial fit, and dipole fit. Both were benchmarked based on simulated cardiac excitation in two models of the human heart and applied to clinical data. RESULTS: VFF data acquired in one atrium were used to estimate model parameters. Under realistic noise conditions, a dipole model approximated the VFF with a median deviation of 0.029 mV, yielding a median VFF attenuation of 142. In a different setup, only VFF data acquired at distances of more than 5 mm to the atrial endocardium were used to estimate the model parameters. The VFF component was then extrapolated for a layer of 5 mm thickness lining the endocardial tissue. A median deviation of 0.082 mV (median VFF attenuation of 49x) was achieved under realistic noise conditions. CONCLUSION: It is feasible to model the VFF component in a personalized way and effectively remove it from uEGMs. SIGNIFICANCE: Application of our novel, simple and computationally inexpensive methods allows immediate diagnostic assessment of uEGM data without prolonging data acquisition.


Asunto(s)
Técnicas Electrofisiológicas Cardíacas , Atrios Cardíacos , Algoritmos , Electrocardiografía , Endocardio , Humanos , Procesamiento de Señales Asistido por Computador
14.
J Am Heart Assoc ; 9(10): e015751, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32390491

RESUMEN

Background The tandem of P domains in a weak inward rectifying K+ channel (TWIK)-related acid-sensitive K+ channel (TASK-1; hK2P3.1) two-pore-domain potassium channel was recently shown to regulate the atrial action potential duration. In the human heart, TASK-1 channels are specifically expressed in the atria. Furthermore, upregulation of atrial TASK-1 currents was described in patients suffering from atrial fibrillation (AF). We therefore hypothesized that TASK-1 channels represent an ideal target for antiarrhythmic therapy of AF. In the present study, we tested the antiarrhythmic effects of the high-affinity TASK-1 inhibitor A293 on cardioversion in a porcine model of paroxysmal AF. Methods and Results Heterologously expressed human and porcine TASK-1 channels are blocked by A293 to a similar extent. Patch clamp measurements from isolated human and porcine atrial cardiomyocytes showed comparable TASK-1 currents. Computational modeling was used to investigate the conditions under which A293 would be antiarrhythmic. German landrace pigs underwent electrophysiological studies under general anesthesia. Paroxysmal AF was induced by right atrial burst stimulation. After induction of AF episodes, intravenous administration of A293 restored sinus rhythm within cardioversion times of 177±63 seconds. Intravenous administration of A293 resulted in significant prolongation of the atrial effective refractory period, measured at cycle lengths of 300, 400 and 500 ms, whereas the surface ECG parameters and the ventricular effective refractory period lengths remained unchanged. Conclusions Pharmacological inhibition of atrial TASK-1 currents exerts antiarrhythmic effects in vivo as well as in silico, resulting in acute cardioversion of paroxysmal AF. Taken together, these experiments indicate the therapeutic potential of A293 for AF treatment.


Asunto(s)
Antiarrítmicos/farmacología , Fibrilación Atrial/tratamiento farmacológico , Frecuencia Cardíaca/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Sulfonamidas/farmacología , ortoaminobenzoatos/farmacología , Animales , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Modelos Animales de Enfermedad , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Femenino , Humanos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Simulación del Acoplamiento Molecular , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Prueba de Estudio Conceptual , Periodo Refractario Electrofisiológico/efectos de los fármacos , Sus scrofa , Factores de Tiempo , Xenopus laevis
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2277-2280, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31946354

RESUMEN

The outcomes of ablation targeting either reentry activations or fractionated activity during persistent atrial fibrillation (AF) therapy remain suboptimal due to, among others, the intricate underlying AF dynamics. In the present work, we sought to investigate such AF dynamics in a heterogeneous simulation setup using recurrence quantification analysis (RQA). AF was simulated in a spherical model of the left atrium, from which 412 unipolar atrial electrograms (AEGs) were extracted (2 s duration; 5 mm spacing). The phase was calculated using the Hilbert transform, followed by the identification of points of singularity (PS). Three regions were defined according to the occurrence of PSs: 1) no rotors; 2) transient rotors and; 3) long-standing rotors. Bipolar AEGs (1114) were calculated from pairs of unipolar nodes and bandpass filtered (30-300 Hz). The CARTO criterion (Biosense Webster) was used for AEGs classification (normal vs. fractionated). RQA attributes were calculated from the filtered bipolar AEGs: determinism (DET); recurrence rate (RR); laminarity (LAM). Sample entropy (SampEn) and dominant frequency (DF) were also calculated from the AEGs. Regions with longstanding rotors have shown significantly lower RQA attributes and SampEn when compared to the other regions, suggesting a higher irregular behaviour (P≤0.01 for all cases). Normal and fractionated AEGs were found in all regions (respectively; Region 1: 387 vs. 15; Region 2: 221 vs. 13; Region 3: 415 vs. 63). Region 1 vs. Region 3 have shown significant differences in normal AEGs (P≤0.0001 for all RQA attributes and SampEn), and significant differences in fractionated AEGs for LAM, RR and SampEn (P=0.0071, P=0.0221 and P=0.0086, respectively). Our results suggest the co-existence of normal and fractionated AEGs within long-standing rotors. RQA has unveiled distinct dynamic patterns-irrespective of AEGs classification-related to regularity structures and their nonstationary behaviour in a rigorous deterministic context.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Algoritmos , Técnicas Electrofisiológicas Cardíacas , Atrios Cardíacos , Humanos , Recurrencia
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 5446-5459, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30441569

RESUMEN

Cardiac resynchronization therapy (CRT) can substantially improve dyssynchronous heart failure and reduce mortality. However, one-third of the CRT patients derive no measurable benefit from CRT, due to suboptimal placement of the left ventricular (LV) lead. We introduce a pipeline for improved CRT-therapy by creating an electromechanical model using patient-specific geometric parameters allowing individualization of therapy. The model successfully mimics expected changes when variables for tension, stiffness, and conduction are entered. Changing LV pacing site had a notable effect on maximum pressure gradient (dP/dtmax) in the presence of cardiac scarring, causing non-uniform excitation propagation through the LV. Tailoring CRT to the individual requires simulations with patient-specific biventricular meshes including cardiac geometry and conductivity properties.


Asunto(s)
Terapia de Resincronización Cardíaca , Insuficiencia Cardíaca , Frecuencia Cardíaca , Ventrículos Cardíacos , Humanos , Resultado del Tratamiento
17.
Front Physiol ; 9: 1251, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30298012

RESUMEN

Catheter ablation is a curative therapeutic approach for atrial fibrillation (AF). Ablation of rotational sources based on basket catheter measurements has been proposed as a promising approach in patients with persistent AF to complement pulmonary vein isolation. However, clinically reported success rates are equivocal calling for a mechanistic investigation under controlled conditions. We present a computational framework to benchmark ablation strategies considering the whole cycle from excitation propagation to electrogram acquisition and processing to virtual therapy. Fibrillation was induced in a patient-specific 3D volumetric model of the left atrium, which was homogeneously remodeled to sustain reentry. The resulting extracellular potential field was sampled using models of grid catheters as well as realistically deformed basket catheters considering the specific atrial anatomy. The virtual electrograms were processed to compute phase singularity density maps to target rotor tips with up to three circular ablations. Stable rotors were successfully induced in different regions of the homogeneously remodeled atrium showing that rotors are not constrained to unique anatomical structures or locations. Density maps of rotor tip trajectories correctly identified and located the rotors (deviation < 10 mm) based on catheter recordings only for sufficient resolution (inter-electrode distance ≤3 mm) and proximity to the wall (≤10 mm). Targeting rotor sites with ablation did not stop reentries in the homogeneously remodeled atria independent from lesion size (1-7 mm radius), from linearly connecting lesions with anatomical obstacles, and from the number of rotors targeted sequentially (≤3). Our results show that phase maps derived from intracardiac electrograms can be a powerful tool to map atrial activation patterns, yet they can also be misleading due to inaccurate localization of the rotor tip depending on electrode resolution and distance to the wall. This should be considered to avoid ablating regions that are in fact free of rotor sources of AF. In our experience, ablation of rotor sites was not successful to stop fibrillation. Our comprehensive simulation framework provides the means to holistically benchmark ablation strategies in silico under consideration of all steps involved in electrogram-based therapy and, in future, could be used to study more heterogeneously remodeled disease states as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA