Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Chromosomes Cancer ; 60(4): 287-292, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277788

RESUMEN

Composite lymphoma is the rare simultaneous manifestation of two distinct lymphomas. Chronic lymphocytic leukemia (CLL) has a propensity for occurring in composite lymphomas, a phenomenon that remains to be elucidated. We applied cytogenetics, droplet digital polymerase chain reaction, and massively parallel sequencing to analyze longitudinally a patient with CLL, who 3 years later showed transformation to a hairy cell leukemia-variant (HCL-V). Outgrowth of the IGHV4-34-positive HCL-V clone at the expense of the initially dominant CLL clone with trisomy 12 and MED12 mutation started before CLL-guided treatment and was accompanied by a TP53 mutation, which was already detectable at diagnosis of CLL. Furthermore, deep sequencing of IGH showed a composite lymphoma with presence of both disease components at all analyzed timepoints (down to a minor clone: major clone ratio of ~1:1000). Overall, our analyses showed a disease course that resembled clonal dynamics reported for malignancies with intratumoral heterogeneity and illustrate the utility of deep sequencing of IGH to detect distinct clonal populations at diagnosis, monitor clonal response to therapy, and possibly improve clinical outcomes.


Asunto(s)
Células Clonales , Leucemia de Células Pilosas/patología , Leucemia Linfocítica Crónica de Células B/patología , Neoplasias Primarias Múltiples/patología , Anciano , Cromosomas Humanos Par 12 , Genes de las Cadenas Pesadas de las Inmunoglobulinas , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Masculino , Neoplasias Primarias Múltiples/genética , Reacción en Cadena de la Polimerasa , Trisomía , Secuenciación Completa del Genoma
2.
Am J Pathol ; 190(2): 442-452, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31843500

RESUMEN

Pathologic downstaging (pDS) to neoadjuvant chemotherapy (NAC) is one of the most important predictors of survival in muscle-invasive bladder cancer (MIBC). The use of NAC is limited as pDS is only achieved in 30% to 40% of cases and predictive biomarkers are still lacking. We performed a comprehensive immunomolecular biomarker analysis to characterize the role of immune cells and inhibitory checkpoints, genome-wide frequencies of copy number alterations, mutational signatures in whole exome, and tumor mutational burden in predicting NAC response. Our retrospective study included 23 primary MIBC patients who underwent NAC, followed by radical cystectomy. pDS to NAC was a significant prognostic factor for better recurrence-free survival (P < 0.001), with a median time to recurrence of 41.2 versus 5.5 months in nonresponders. DNA damage repair alterations were noticed in 38.1% (n = 8), confirming a positive correlation with high tumor mutational burden (P = 0.007). Chromosomal 7p12 amplification, including the genes HUS1, EGFR, ABCA13, and IKZF1, predicted nonresponse in patients with a sensitivity, a negative predictive value, and a specificity of 71.4%, 87.5%, and 100%, respectively. Total count of CD3+ T cells/mm2 tumor was a significant predictor of NAC response. In conclusion, 7p12 amplification may predict nonresponse to NAC and worse survival in MIBC. Multicenter, prospective trials with sufficient statistical power may further fortify these findings.


Asunto(s)
Biomarcadores de Tumor/genética , Cromosomas Humanos Par 7/genética , Amplificación de Genes , Neoplasias de los Músculos/patología , Terapia Neoadyuvante/métodos , Recurrencia Local de Neoplasia/patología , Neoplasias de la Vejiga Urinaria/patología , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Aberraciones Cromosómicas , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de los Músculos/tratamiento farmacológico , Neoplasias de los Músculos/genética , Invasividad Neoplásica , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética
3.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34360545

RESUMEN

Classic hairy cell leukemia (HCL) is a rare mature B-cell malignancy associated with pancytopenia and infectious complications due to progressive infiltration of the bone marrow and spleen. Despite tremendous therapeutic advances achieved with the implementation of purine analogues such as cladribine into clinical practice, the culprit biologic alterations driving this fascinating hematologic disease have long stayed concealed. Nearly 10 years ago, BRAF V600E was finally identified as a key activating mutation detectable in almost all HCL patients and throughout the entire course of the disease. However, additional oncogenic biologic features seem mandatory to enable HCL transformation, an open issue still under active investigation. This review summarizes the current understanding of key pathogenic mechanisms implicated in HCL and discusses major hurdles to overcome in the context of other BRAF-mutated malignancies.


Asunto(s)
Leucemia de Células Pilosas/patología , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Animales , Humanos , Leucemia de Células Pilosas/genética
4.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430305

RESUMEN

Lynch syndrome, known as hereditary nonpolyposis colorectal cancer (HNPCC), is an autosomal-dominant familial cancer syndrome with an increased risk for urothelial cancer (UC). Mismatch repair (MMR) deficiency, due to pathogenic variants in MLH1, MSH2, MSH6, and PMS2, and microsatellite instability, are known for development of Lynch syndrome (LS) associated carcinogenesis. UC is the third most common cancer type in LS-associated tumors. The diversity of germline variants in the affected MMR genes and their following subsequent function loss might be responsible for the variation in cancer risk, suggesting an increased risk of developing UC in MSH2 mutation carriers. In this review, we will focus on LS-associated UC of the upper urinary tract (UUT) and bladder, their germline profiles, and outcomes compared to sporadic UC, the impact of genetic testing, as well as urological follow-up strategies in LS. In addition, we present a case of metastatic LS-associated UC of the UUT and bladder, achieving complete response during checkpoint inhibition since more than 2 years.


Asunto(s)
Carcinoma/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Predisposición Genética a la Enfermedad , Urotelio/metabolismo , Carcinoma/complicaciones , Carcinoma/patología , Neoplasias Colorrectales Hereditarias sin Poliposis/complicaciones , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Reparación de la Incompatibilidad de ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Inestabilidad de Microsatélites , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Homólogo 1 de la Proteína MutL/genética , Proteína 2 Homóloga a MutS/genética , Urotelio/patología
5.
Int J Cancer ; 139(3): 657-63, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-26996277

RESUMEN

Regulated intramembrane proteolysis (RIP) has been shown to be an important mechanism for oncogenic activation of EpCAM through nuclear translocation of the intracellular domain EpICD. Recently, we identified two different membranous EpCAM variants namely EpCAM(MF) (full-length) and EpCAM(MT) (truncated) to be expressed in the majority of human epithelial tumors. The aim of our study was to evaluate the potential role of these two protein variants as additional prognostic biomarkers in colorectal cancer. In most studies only one antibody targeting the extracellular domain of EpCAM (EpEX) has been used, whereas in the present study additionally an antibody which detects the intracellular domain (EpICD) was applied to discriminate between different EpCAM variants. Using immunohistochemistry, we analyzed the expression of EpCAM(MF) and EpCAM(MT) variants in 640 patients with colorectal cancer and determined their correlations with other prognostic factors and clinical outcome. A statistically significant association was observed for EpCAM(MT) with advanced tumor stage (p < 0.001), histological grade (p = 0.01), vascular (p < 0.001) and marginal (p = 0.002) invasion. Survival analysis demonstrated reduced overall survival (p < 0.004) in patients with tumors expressing the EpCAM(MT) phenotype when compared to patients with tumors expressing the EpCAM(MF) variant. In conclusion, this study for the first time indicates that expression of EpCAM(MT) is associated with a more aggressive phenotype and predicts poor survival in patients with colorectal cancer.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Molécula de Adhesión Celular Epitelial/metabolismo , Fenotipo , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales/mortalidad , Molécula de Adhesión Celular Epitelial/genética , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Metástasis Linfática , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Análisis de Matrices Tisulares
6.
Nanomedicine ; 12(3): 823-833, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26654993

RESUMEN

Biofunctionalized scaffold facilitates complete healing of large defects. Biological constraints are induction and ingrowth of vessels. Angiogenic growth factors such as vascular endothelial growth factor or angiopoietin-1 can be bound to nano-scaled diamond particles. Corresponding bioactivities need to be examined after biofunctionalization. We therefore determined the physisorptive capacity of distinctly manufactured, differently sized nDP and the corresponding activities of bound factors. The properties of biofunctionalized nDPs were investigated on cultivated human mesenchymal stem cells and on the developing chicken embryo chorio-allantoic membrane. Eventually porous bone substitution material was coated with nDP to generate an interface that allows biofactor physisorption. Angiopoietin-1 was applied shortly before scaffold implantation into an osseous defect in sheep calvaria. Biofunctionalized scaffolds exhibited significantly increased rates of angiogenesis already one month after implantation. Conclusively, nDP can be used to ease functionalization of synthetic biomaterials. FROM THE CLINICAL EDITOR: With the advances in nanotechnology, many nano-sized materials have been used in the biomedical field. This is also true for nano-diamond particles (nDP). In this article, the authors investigated the physical properties of functionalized nano-diamond particles in both in-vitro and in-vivo settings. The positive findings would help improve understanding of these nanomaterials in regenerative medicine.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Angiopoyetina 1/farmacología , Diamante/química , Nanoestructuras/química , Neovascularización Fisiológica , Andamios del Tejido/química , Factor A de Crecimiento Endotelial Vascular/farmacología , Adsorción , Inductores de la Angiogénesis/química , Angiopoyetina 1/química , Animales , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Embrión de Pollo , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Nanoestructuras/ultraestructura , Neovascularización Fisiológica/efectos de los fármacos , Ovinos , Ingeniería de Tejidos , Factor A de Crecimiento Endotelial Vascular/química
7.
BMC Cancer ; 15: 738, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26483043

RESUMEN

BACKGROUND: Novel synthesized analogs of Aplidin, PM01215 and PM02781, were tested for antiangiogenic effects on primary human endothelial cells in vitro and for inhibition of angiogenesis and tumor growth in vivo. METHODS: Antiangiogenic activity of both derivatives was evaluated by real-time cell proliferation, capillary tube formation and vascular endothelial growth factor (VEGF)-induced spheroid sprouting assays. Distribution of endothelial cells in the different phases of the cell cycle was analyzed by flow cytometry. Aplidin analogs were tested in vivo in chicken chorioallantoic membrane (CAM) assays. RESULTS: Both derivatives inhibited angiogenic capacities of human endothelial cells (HUVECs) in vitro at low nanomolar concentrations. Antiangiogenic effects of both analogs were observed in the CAM. In addition, growth of human multiple myeloma xenografts in vivo in CAM was significantly reduced after application of both analogs. On the molecular level, both derivatives induced cell cycle arrest in G1 phase. This growth arrest of endothelial cells correlated with induction of the cell cycle inhibitor p16(INK4A) and increased senescence-associated beta galactosidase activity. In addition, Aplidin analogs induced oxidative stress and decreased production of the vascular maturation factors Vasohibin-1 and Dickkopf-3. CONCLUSIONS: From these findings we conclude that both analogs are promising agents for the development of antiangiogenic drugs acting independent on classical inhibition of VEGF signaling.


Asunto(s)
Bortezomib/farmacología , Depsipéptidos/farmacología , Endotelio Vascular/efectos de los fármacos , Mieloma Múltiple/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Fisiológica/efectos de los fármacos , Antineoplásicos/farmacología , Western Blotting , Ciclo Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Humanos , Microscopía Confocal , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Estrés Oxidativo , Péptidos Cíclicos , Embarazo , Células Tumorales Cultivadas
8.
BMC Cancer ; 15: 372, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25947366

RESUMEN

BACKGROUND: EpCAM is highly expressed on membrane of epithelial tumor cells and has been detected as soluble/secreted (sEpCAM) in serum of cancer patients. In this study we established an ELISA for in vitro diagnostics to measure sEpCAM concentrations in ascites. Moreover, we evaluated the influence of sEpCAM levels on catumaxomab (antibody)--dependent cellular cytotoxicity (ADCC). METHODS: Ascites specimens from cancer patients with positive (C+, n = 49) and negative (C-, n = 22) cytology and ascites of patients with liver cirrhosis (LC, n = 31) were collected. All cell-free plasma samples were analyzed for sEpCAM levels with a sandwich ELISA system established and validated by a human recombinant EpCAM standard for measurements in ascites as biological matrix. In addition, we evaluated effects of different sEpCAM concentrations on catumaxomab-dependent cell-mediated cytotoxicity (ADCC) with human peripheral blood mononuclear cells (PBMNCs) and human tumor cells. RESULTS: Our ELISA showed a high specificity for secreted EpCAM as determined by control HEK293FT cell lines stably expressing intracellular (EpICD), extracellular (EpEX) and the full-length protein (EpCAM) as fusion proteins. The lower limit of quantification was 200 pg/mL and the linear quantification range up to 5,000 pg/mL in ascites as biological matrix. Significant levels of sEpCAM were found in 39% of C+, 14% of C- and 13% of LC ascites samples. Higher concentrations of sEpCAM were detectable in C+ (mean: 1,015 pg/mL) than in C- (mean: 449 pg/mL; p = 0.04) or LC (mean: 326 pg/mL; p = 0.01). Soluble EpCAM concentration of 1 ng/mL significantly inhibited ADCC of PBMNCs on EpCAM overexpressing target cells. CONCLUSION: Elevated concentrations of sEpCAM can be found in a subgroup of C+ and also in a small group of C- patients. We consider that sEpCAM levels in different tumor entities and individual patients should be evaluated prior to applying anti-EpCAM antibody-based cancer therapies, since sEpCAM neutralizes catumaxomab activity, making therapy less efficient.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Antígenos de Neoplasias/metabolismo , Ascitis/metabolismo , Ascitis/patología , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citotoxicidad Inmunológica , Molécula de Adhesión Celular Epitelial , Células HEK293 , Humanos , Cirrosis Hepática/patología , Neoplasias/patología , Estudios Retrospectivos
9.
Heliyon ; 10(7): e28358, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38689972

RESUMEN

The development of single-cell omics tools has enabled scientists to study the tumor microenvironment (TME) in unprecedented detail. However, each of the different techniques may have its unique strengths and limitations. Here we directly compared two commercially available high-throughput single-cell RNA sequencing (scRNA-seq) technologies - droplet-based 10X Chromium vs. microwell-based BD Rhapsody - using paired samples from patients with localized prostate cancer (PCa) undergoing a radical prostatectomy. Although high technical consistency was observed in unraveling the whole transcriptome, the relative abundance of cell populations differed. Cells with low mRNA content such as T cells were underrepresented in the droplet-based system, at least partly due to lower RNA capture rates. In contrast, microwell-based scRNA-seq recovered less cells of epithelial origin. Moreover, we discovered platform-dependent variabilities in mRNA quantification and cell-type marker annotation. Overall, our study provides important information for selection of the appropriate scRNA-seq platform and for the interpretation of published results.

10.
Mol Cancer ; 12: 56, 2013 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-23758908

RESUMEN

INTRODUCTION: The Epithelial Cell Adhesion Molecule (EpCAM) has been shown to be strongly expressed in human breast cancer and cancer stem cells and its overexpression has been supposed to support tumor progression and metastasis. However, effects of EpCAM overexpression on normal breast epithelial cells have never been studied before. Therefore, we analyzed effects of transient adenoviral overexpression of EpCAM on proliferation, migration and differentiation of primary human mammary epithelial cells (HMECs). METHODS: HMECs were transfected by an adenoviral system for transient overexpression of EpCAM. Thereafter, changes in cell proliferation and migration were studied using a real time measurement system. Target gene expression was evaluated by transcriptome analysis in proliferating and polarized HMEC cultures. A Chicken Chorioallantoic Membrane (CAM) xenograft model was used to study effects on in vivo growth of HMECs. RESULTS: EpCAM overexpression in HMECs did not significantly alter gene expression profile of proliferating or growth arrested cells. Proliferating HMECs displayed predominantly glycosylated EpCAM isoforms and were inhibited in cell proliferation and migration by upregulation of p27(KIP1) and p53. HMECs with overexpression of EpCAM showed a down regulation of E-cadherin. Moreover, cells were more resistant to TGF-ß1 induced growth arrest and maintained longer capacities to proliferate in vitro. EpCAM overexpressing HMECs xenografts in chicken embryos showed hyperplastic growth, lack of lumen formation and increased infiltrates of the chicken leukocytes. CONCLUSIONS: EpCAM revealed oncogenic features in normal human breast cells by inducing resistance to TGF-ß1-mediated growth arrest and supporting a cell phenotype with longer proliferative capacities in vitro. EpCAM overexpression resulted in hyperplastic growth in vivo. Thus, we suggest that EpCAM acts as a prosurvival factor counteracting terminal differentiation processes in normal mammary glands.


Asunto(s)
Antígenos de Neoplasias/genética , Mama/metabolismo , Mama/patología , Moléculas de Adhesión Celular/genética , Células Epiteliales/metabolismo , Expresión Génica , Animales , Antígenos de Neoplasias/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Molécula de Adhesión Celular Epitelial , Femenino , Perfilación de la Expresión Génica , Humanos , Hiperplasia , Cultivo Primario de Células , Factor de Crecimiento Transformador beta1/farmacología , Trasplante Heterólogo
11.
Cancers (Basel) ; 15(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36831346

RESUMEN

BACKGROUND: Surgery is the standard treatment in localized renal cell carcinoma (RCC). Pembrolizumab is now approved for adjuvant therapy in high-risk patients. However, inhomogeneity of studies gives ambiguity which patient benefit most from adjuvant therapy. A high infiltration of CD8+ T cells is known to be linked with poor prognosis in RCC. CXCR3 is a key player of CD8+ T cell differentiation and infiltration. We aimed to evaluate CXCR3 as a potential marker for predicting recurrence. METHODS: CXCR3 and immune cell subsets (CD4, CD8, CD68 and FoXP3) were measured on RCC samples by multiplex immunofluorescence (mIF) staining. Cellular localization of CXCR3 was evaluated using single-cell RNA analysis on a publicly available dataset. RESULTS: Tumor samples of 42 RCC patients were analyzed, from which 59.5% were classified as clear-cell RCC and of which 20 had recurrence. Single-cell RNA analysis revealed that CXCR3 was predominantly expressed in intratumoral T cells and dendritic cells. CXCR3 expression was higher in advanced tumors stages (p = 0.0044) and grade (p = 0.0518), correlating significantly with a higher CD8+ T cell expression (p < 0.001). Patients with CXCR3high RCCs had also a significant shorter RFS compared to CXCR3low (median: 78 vs. 147 months, p = 0.0213). In addition, also tumor stage pT3/4 (p < 0.0001) as well as grade G3/4 (p = 0.0008) negatively influenced RFS. CONCLUSION: CXCR3high cell density was associated with high T cell infiltration and advanced tumor stage, worsening RFS in surgically resected RCC patients. Beside its prognostic value, CXCR3 might be a predictive biomarker to guide therapy decision for adjuvant therapy in localized RCC.

12.
Front Immunol ; 14: 1095195, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006314

RESUMEN

Renal cell carcinoma (RCC) is frequently infiltrated by immune cells, a process which is governed by chemokines. CD8+ T cells in the RCC tumor microenvironment (TME) may be exhausted which most likely influence therapy response and survival. The aim of this study was to evaluate chemokine-driven T cell recruitment, T cell exhaustion in the RCC TME, as well as metabolic processes leading to their functional anergy in RCC. Eight publicly available bulk RCC transcriptome collectives (n=1819) and a single cell RNAseq dataset (n=12) were analyzed. Immunodeconvolution, semi-supervised clustering, gene set variation analysis and Monte Carlo-based modeling of metabolic reaction activity were employed. Among 28 chemokine genes available, CXCL9/10/11/CXCR3, CXCL13/CXCR5 and XCL1/XCR1 mRNA expression were significantly increased in RCC compared to normal kidney tissue and also strongly associated with tumor-infiltrating effector memory and central memory CD8+ T cells in all investigated collectives. M1 TAMs, T cells, NK cells as well as tumor cells were identified as the major sources of these chemokines, whereas T cells, B cells and dendritic cells were found to predominantly express the cognate receptors. The cluster of RCCs characterized by high chemokine expression and high CD8+ T cell infiltration displayed a strong activation of IFN/JAK/STAT signaling with elevated expression of multiple T cell exhaustion-associated transcripts. Chemokinehigh RCCs were characterized by metabolic reprogramming, in particular by downregulated OXPHOS and increased IDO1-mediated tryptophan degradation. None of the investigated chemokine genes was significantly associated with survival or response to immunotherapy. We propose a chemokine network that mediates CD8+ T cell recruitment and identify T cell exhaustion, altered energy metabolism and high IDO1 activity as key mechanisms of their suppression. Concomitant targeting of exhaustion pathways and metabolism may pose an effective approach to RCC therapy.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Linfocitos T CD8-positivos , Agotamiento de Células T , Quimiocinas/genética , Quimiocina CXCL9/genética , Microambiente Tumoral
13.
NPJ Precis Oncol ; 7(1): 64, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400502

RESUMEN

Polybromo-1 (PBRM1) loss of function mutations are present in a fraction of biliary tract cancers (BTCs). PBRM1, a subunit of the PBAF chromatin-remodeling complex, is involved in DNA damage repair. Herein, we aimed to decipher the molecular landscape of PBRM1 mutated (mut) BTCs and to define potential translational aspects. Totally, 1848 BTC samples were analyzed using next-generation DNA-sequencing and immunohistochemistry (Caris Life Sciences, Phoenix, AZ). siRNA-mediated knockdown of PBRM1 was performed in the BTC cell line EGI1 to assess the therapeutic vulnerabilities of ATR and PARP inhibitors in vitro. PBRM1 mutations were identified in 8.1% (n = 150) of BTCs and were more prevalent in intrahepatic BTCs (9.9%) compared to gallbladder cancers (6.0%) or extrahepatic BTCs (4.5%). Higher rates of co-mutations in chromatin-remodeling genes (e.g., ARID1A 31% vs. 16%) and DNA damage repair genes (e.g., ATRX 4.4% vs. 0.3%) were detected in PBRM1-mutated (mut) vs. PBRM1-wildtype (wt) BTCs. No difference in real-world overall survival was observed between PBRM1-mut and PBRM1-wt patients (HR 1.043, 95% CI 0.821-1.325, p = 0.731). In vitro, experiments suggested that PARP ± ATR inhibitors induce synthetic lethality in the PBRM1 knockdown BTC model. Our findings served as the scientific rationale for PARP inhibition in a heavily pretreated PBRM1-mut BTC patient, which induced disease control. This study represents the largest and most extensive molecular profiling study of PBRM1-mut BTCs, which in vitro sensitizes to DNA damage repair inhibiting compounds. Our findings might serve as a rationale for future testing of PARP/ATR inhibitors in PBRM1-mut BTCs.

14.
BMC Cancer ; 12: 501, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23110550

RESUMEN

BACKGROUND: The epithelial cell adhesion molecule (EpCAM) has been shown to be overexpressed in breast cancer and stem cells and has emerged as an attractive target for immunotherapy of breast cancer patients. This study analyzes the effects of EpCAM on breast cancer cell lines with epithelial or mesenchymal phenotype. METHODS: For this purpose, shRNA-mediated knockdown of EpCAM gene expression was performed in EpCAMhigh breast cancer cell lines with epithelial phenotype (MCF-7, T47D and SkBR3). Moreover, EpCAMlow breast carcinoma cell lines with mesenchymal phenotype (MDA-MB-231, Hs578t) and inducible overexpression of EpCAM were used to study effects on proliferation, migration and in vivo growth. RESULTS: In comparison to non-specific silencing controls (n/s-crtl) knockdown of EpCAM (E#2) in EpCAMhigh cell lines resulted in reduced cell proliferation under serum-reduced culture conditions. Moreover, DNA synthesis under 3D culture conditions in collagen was significantly reduced. Xenografts of MCF-7 and T47D cells with knockdown of EpCAM formed smaller tumors that were less invasive. EpCAMlow cell lines with tetracycline-inducible overexpression of EpCAM showed no increased cell proliferation or migration under serum-reduced growth conditions. MDA-MB-231 xenografts with EpCAM overexpression showed reduced invasion into host tissue and more infiltrates of chicken granulocytes. CONCLUSIONS: The role of EpCAM in breast cancer strongly depends on the epithelial or mesenchymal phenotype of tumor cells. Cancer cells with epithelial phenotype need EpCAM as a growth- and invasion-promoting factor, whereas tumor cells with a mesenchymal phenotype are independent of EpCAM in invasion processes and tumor progression. These findings might have clinical implications for EpCAM-based targeting strategies in patients with invasive breast cancer.


Asunto(s)
Antígenos de Neoplasias/genética , Moléculas de Adhesión Celular/genética , Movimiento Celular/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Animales , Antígenos de Neoplasias/metabolismo , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cadherinas/genética , Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Embrión de Pollo , Membrana Corioalantoides/metabolismo , Membrana Corioalantoides/patología , Molécula de Adhesión Celular Epitelial , Células HEK293 , Humanos , Inmunohistoquímica , Invasividad Neoplásica , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Fenotipo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
15.
Cancer Cell ; 40(12): 1503-1520.e8, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36368318

RESUMEN

Non-small cell lung cancer (NSCLC) is characterized by molecular heterogeneity with diverse immune cell infiltration patterns, which has been linked to therapy sensitivity and resistance. However, full understanding of how immune cell phenotypes vary across different patient subgroups is lacking. Here, we dissect the NSCLC tumor microenvironment at high resolution by integrating 1,283,972 single cells from 556 samples and 318 patients across 29 datasets, including our dataset capturing cells with low mRNA content. We stratify patients into immune-deserted, B cell, T cell, and myeloid cell subtypes. Using bulk samples with genomic and clinical information, we identify cellular components associated with tumor histology and genotypes. We then focus on the analysis of tissue-resident neutrophils (TRNs) and uncover distinct subpopulations that acquire new functional properties in the tissue microenvironment, providing evidence for the plasticity of TRNs. Finally, we show that a TRN-derived gene signature is associated with anti-programmed cell death ligand 1 (PD-L1) treatment failure.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neutrófilos/metabolismo , Microambiente Tumoral , Antígeno B7-H1/metabolismo
16.
Clin Cancer Res ; 28(22): 4957-4967, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36112544

RESUMEN

PURPOSE: Chemokines are essential for immune cell trafficking and are considered to have a major impact on the composition of the tumor microenvironment. CX-chemokine receptor 4 (CXCR4) is associated with poor differentiation, metastasis, and prognosis in pancreatic ductal adenocarcinoma (PDAC). This study provides a comprehensive molecular portrait of PDAC according to CXCR4 mRNA expression levels. EXPERIMENTAL DESIGN: The Cancer Genome Atlas database was used to explore molecular and immunologic features associated with CXCR4 mRNA expression in PDAC. A large real-word dataset (n = 3,647) served for validation and further exploratory analyses. Single-cell RNA analyses on a publicly available dataset and in-house multiplex immunofluorescence (mIF) experiments were performed to elaborate cellular localization of CXCR4. RESULTS: High CXCR4 mRNA expression (CXCR4high) was associated with increased infiltration of regulatory T cells, CD8+ T cells, and macrophages, and upregulation of several immune-related genes, including immune checkpoint transcripts (e.g., TIGIT, CD274, PDCD1). Analysis of the validation cohort confirmed the CXCR4-dependent immunologic TME composition in PDAC irrespective of microsatellite instability-high/mismatch repair-deficient or tumor mutational burden. Single-cell RNA analysis and mIF revealed that CXCR4 was mainly expressed by macrophages and T-cell subsets. Clinical relevance of our finding is supported by an improved survival of CXCR4high PDAC. CONCLUSIONS: High intratumoral CXCR4 mRNA expression is linked to a T cell- and macrophage-rich PDAC phenotype with high expression of inhibitory immune checkpoints. Thus, our findings might serve as a rationale to investigate CXCR4 as a predictive biomarker in patients with PDAC undergoing immune checkpoint inhibition.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Receptores de Quimiocina , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Microambiente Tumoral/genética , ARN Mensajero/genética , ARN , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Neoplasias Pancreáticas
17.
Blood ; 114(18): 3960-7, 2009 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-19713465

RESUMEN

Antiangiogenic effects of the proteasome inhibitor bortezomib were analyzed on tumor xenografts in vivo. Bortezomib strongly inhibited angiogenesis and vascularization in the chicken chorioallantoic membrane. Bortezomib's inhibitory effects on chorioallantoic membrane vascularization were abrogated in the presence of distinct tumor xenografts, thanks to a soluble factor secreted by tumor cells. Through size-exclusion and ion-exchange chromatography as well as mass spectroscopy, we identified GRP-78, a chaperone protein of the unfolded protein response, as being responsible for bortezomib resistance. Indeed, a variety of bortezomib-resistant solid tumor cell lines (PC-3, HRT-18), but not myeloma cell lines (U266, OPM-2), were able to secrete high amounts of GRP-78. Recombinant GRP-78 conferred bortezomib resistance to endothelial cells and OPM-2 myeloma cells. Knockdown of GRP78 gene expression in tumor cells and immunodepletion of GRP-78 protein from tumor cell supernatants restored bortezomib sensitivity. GRP-78 did not bind or complex bortezomib but induced prosurvival signals by phosphorylation of extracellular signal-related kinase and inhibited p53-mediated expression of proapoptotic Bok and Noxa proteins in endothelial cells. From our data, we conclude that distinct solid tumor cells are able to secrete GRP-78 into the tumor microenvironment, thus demonstrating a hitherto unknown mechanism of resistance to bortezomib.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Ácidos Borónicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Pliegue de Proteína/efectos de los fármacos , Pirazinas/farmacología , Animales , Bortezomib , Línea Celular Tumoral , Embrión de Pollo , Membrana Corioalantoides/metabolismo , Chaperón BiP del Retículo Endoplásmico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/genética , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasoma , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Stem Cells ; 27(9): 2342-52, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19522014

RESUMEN

Prostate cancer tumor growth and neovascularization is promoted by an interplay between migratory tumor stromal cells such as specialized tumor-associated macrophages (TAMs) and circulating endothelial precursor cells (CEPs). As vehicles for tumor therapy, human CEPs are relatively easy to isolate from peripheral blood, are able to proliferate long-term in vitro, are amenable to viral manipulation, and preferentially home to regions of ischemia found in growing tumors. We show here that human peripheral blood CEPs expanded ex vivo migrate to prostate cancer cells in vitro and efficiently home to human prostate tumor xenografts in vivo. Infection of precursors ex vivo with an adenovirus constructed to secrete a soluble form of the colony-stimulating factor-1 receptor CD115 that inhibits macrophage viability and migration in vitro significantly decreases the number of TAMs in xenografts (p < .05), reduces proliferation (p < .01) and vascular density (p < .03), and suppresses the growth of xenografts (p < .03). These data show for the first time that targeting stromal cell processes with cellular therapy has the potential to retard prostate tumor growth.


Asunto(s)
Adenoviridae/genética , Células Endoteliales/metabolismo , Neoplasias de la Próstata/terapia , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Animales , Western Blotting , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Endoteliales/citología , Citometría de Flujo , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias de la Próstata/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Trasplante de Células Madre/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Cancers (Basel) ; 12(9)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825035

RESUMEN

Therapy resistance remains a major challenge in the management of multiple myeloma (MM). We evaluated the expression of FLT3 tyrosine kinase receptor (FLT3, CD135) in myeloma cells as a possible clonal driver. FLT3 expression was analyzed in bone marrow biopsies of patients with monoclonal gammopathy of undetermined significance or smoldering myeloma (MGUS, SMM), newly diagnosed MM (NDMM), and relapsed/refractory MM (RRMM) by immunohistochemistry (IHC). FLT3 gene expression was analyzed by RNA sequencing (RNAseq) and real-time PCR (rt-PCR). Anti-myeloma activity of FLT3 inhibitors (midostaurin, gilteritinib) was tested in vitro on MM cell lines and primary MM cells by 3H-tymidine incorporation assays or flow cytometry. Semi-quantitative expression analysis applying a staining score (FLT3 expression IHC-score, FES, range 1-6) revealed that a high FES (>3) was associated with a significantly shorter progression-free survival (PFS) in NDMM and RRMM patients (p = 0.04). RNAseq and real-time PCR confirmed the expression of FLT3 in CD138-purified MM samples. The functional relevance of FLT3 expression was corroborated by demonstrating the in vitro anti-myeloma activity of FLT3 inhibitors on FLT3-positive MM cell lines and primary MM cells. FLT3 inhibitors might offer a new targeted therapy approach in a subgroup of MM patients displaying aberrant FLT3 signaling.

20.
Cancer Sci ; 100(8): 1414-20, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19493271

RESUMEN

Dkk-3 is proposed to be a new specific marker for tumor endothelial cells. Here we analyzed the clinical relevance of Dkk-3 expression in pancreas adenocarcinomas and determined its role on endothelial cell growth in vitro. Microvessel density in tumor samples was immunohistochemically determined using Dkk-3 and CD31 as endothelial cell markers, respectively. Based on the median microvessel density as a cut-off point, patients were categorized into high and low microvessel density groups and a correlation with survival and clinical parameters was assessed. Moreover, the role of Dkk-3 expression on chemosensitivity of endothelial cells was analyzed. In contrast to CD31 staining, Dkk-3-positive vessels were found only in tumor tissue and Dkk-3 microvessel density significantly correlated negative with tumor grading. In survival analysis the median survival time was 7 months for patients with Dkk-3 low, and 15 months for Dkk-3 high microvessel density (P = 0.0013). Subset analysis of patients receiving gemcitabine therapy showed that overall survival was significantly decreased in Dkk-3 low tumors than in high tumors (P = 0.009). In Cox regression Dkk-3 emerged as a significant independent parameter (P = 0.024). Dkk-3 overexpression in endothelial cells resulted in significantly enhanced growth inhibition after 5-fluorouracil or gemcitabine treatment compared to control endothelial cells and cancer cell lines. Dkk-3 low microvessel density was associated with tumor progression and worse clinical outcome. Overexpression of Dkk-3 enhanced endothelial cell growth inhibition to chemotherapeutic drugs. Therefore, we suggest that Dkk-3 high microvessel density may help to select patients who may benefit from chemotherapy.


Asunto(s)
Adenocarcinoma/patología , Biomarcadores de Tumor/metabolismo , Endotelio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Adaptadoras Transductoras de Señales , Adenocarcinoma/genética , Adenoviridae/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Células Cultivadas , Quimiocinas , Endotelio/patología , Endotelio Vascular/citología , Estudios de Seguimiento , Expresión Génica , Humanos , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular/genética , Neoplasias Pancreáticas/genética , Pronóstico , Estudios Retrospectivos , Análisis de Supervivencia , Factores de Tiempo , Transfección , Venas Umbilicales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA