Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Annu Rev Cell Dev Biol ; 39: 277-305, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37540844

RESUMEN

Cells must tightly regulate their gene expression programs and yet rapidly respond to acute biochemical and biophysical cues within their environment. This information is transmitted to the nucleus through various signaling cascades, culminating in the activation or repression of target genes. Transcription factors (TFs) are key mediators of these signals, binding to specific regulatory elements within chromatin. While live-cell imaging has conclusively proven that TF-chromatin interactions are highly dynamic, how such transient interactions can have long-term impacts on developmental trajectories and disease progression is still largely unclear. In this review, we summarize our current understanding of the dynamic nature of TF functions, starting with a historical overview of early live-cell experiments. We highlight key factors that govern TF dynamics and how TF dynamics, in turn, affect downstream transcriptional bursting. Finally, we conclude with open challenges and emerging technologies that will further our understanding of transcriptional regulation.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina/genética , Secuencias Reguladoras de Ácidos Nucleicos
2.
Mol Cell ; 82(18): 3398-3411.e11, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35863348

RESUMEN

Regulatory elements activate promoters by recruiting transcription factors (TFs) to specific motifs. Notably, TF-DNA interactions often depend on cooperativity with colocalized partners, suggesting an underlying cis-regulatory syntax. To explore TF cooperativity in mammals, we analyze ∼500 mouse and human primary cells by combining an atlas of TF motifs, footprints, ChIP-seq, transcriptomes, and accessibility. We uncover two TF groups that colocalize with most expressed factors, forming stripes in hierarchical clustering maps. The first group includes lineage-determining factors that occupy DNA elements broadly, consistent with their key role in tissue-specific transcription. The second one, dubbed universal stripe factors (USFs), comprises ∼30 SP, KLF, EGR, and ZBTB family members that recognize overlapping GC-rich sequences in all tissues analyzed. Knockouts and single-molecule tracking reveal that USFs impart accessibility to colocalized partners and increase their residence time. Mammalian cells have thus evolved a TF superfamily with overlapping DNA binding that facilitate chromatin accessibility.


Asunto(s)
Cromatina , Factores de Transcripción , Animales , Sitios de Unión , Cromatina/genética , ADN/genética , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Ratones Noqueados , Unión Proteica , Factores de Transcripción/metabolismo
3.
Mol Cell ; 81(7): 1484-1498.e6, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33561389

RESUMEN

Transcription factors (TFs) regulate gene expression by binding to specific consensus motifs within the local chromatin context. The mechanisms by which TFs navigate the nuclear environment as they search for binding sites remain unclear. Here, we used single-molecule tracking and machine-learning-based classification to directly measure the nuclear mobility of the glucocorticoid receptor (GR) in live cells. We revealed two distinct and dynamic low-mobility populations. One accounts for specific binding to chromatin, while the other represents a confinement state that requires an intrinsically disordered region (IDR), implicated in liquid-liquid condensate subdomains. Further analysis showed that the dwell times of both subpopulations follow a power-law distribution, consistent with a broad distribution of affinities on the GR cistrome and interactome. Together, our data link IDRs with a confinement state that is functionally distinct from specific chromatin binding and modulates the transcriptional output by increasing the local concentration of TFs at specific sites.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Receptores de Glucocorticoides/química , Factores de Transcripción/química , Animales , Femenino , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Ratones , Ratas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Nature ; 600(7888): 279-284, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34837071

RESUMEN

Confocal microscopy1 remains a major workhorse in biomedical optical microscopy owing to its reliability and flexibility in imaging various samples, but suffers from substantial point spread function anisotropy, diffraction-limited resolution, depth-dependent degradation in scattering samples and volumetric bleaching2. Here we address these problems, enhancing confocal microscopy performance from the sub-micrometre to millimetre spatial scale and the millisecond to hour temporal scale, improving both lateral and axial resolution more than twofold while simultaneously reducing phototoxicity. We achieve these gains using an integrated, four-pronged approach: (1) developing compact line scanners that enable sensitive, rapid, diffraction-limited imaging over large areas; (2) combining line-scanning with multiview imaging, developing reconstruction algorithms that improve resolution isotropy and recover signal otherwise lost to scattering; (3) adapting techniques from structured illumination microscopy, achieving super-resolution imaging in densely labelled, thick samples; (4) synergizing deep learning with these advances, further improving imaging speed, resolution and duration. We demonstrate these capabilities on more than 20 distinct fixed and live samples, including protein distributions in single cells; nuclei and developing neurons in Caenorhabditis elegans embryos, larvae and adults; myoblasts in imaginal disks of Drosophila wings; and mouse renal, oesophageal, cardiac and brain tissues.


Asunto(s)
Aprendizaje Profundo , Microscopía Confocal/métodos , Microscopía Confocal/normas , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/crecimiento & desarrollo , Línea Celular Tumoral , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Humanos , Discos Imaginales/citología , Ratones , Mioblastos/citología , Especificidad de Órganos , Análisis de la Célula Individual , Fijación del Tejido
5.
Mol Cell ; 75(6): 1161-1177.e11, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31421980

RESUMEN

Genes are transcribed in a discontinuous pattern referred to as RNA bursting, but the mechanisms regulating this process are unclear. Although many physiological signals, including glucocorticoid hormones, are pulsatile, the effects of transient stimulation on bursting are unknown. Here we characterize RNA synthesis from single-copy glucocorticoid receptor (GR)-regulated transcription sites (TSs) under pulsed (ultradian) and constant hormone stimulation. In contrast to constant stimulation, pulsed stimulation induces restricted bursting centered around the hormonal pulse. Moreover, we demonstrate that transcription factor (TF) nuclear mobility determines burst duration, whereas its bound fraction determines burst frequency. Using 3D tracking of TSs, we directly correlate TF binding and RNA synthesis at a specific promoter. Finally, we uncover a striking co-bursting pattern between TSs located at proximal and distal positions in the nucleus. Together, our data reveal a dynamic interplay between TF mobility and RNA bursting that is responsive to stimuli strength, type, modality, and duration.


Asunto(s)
Glucocorticoides/farmacología , Regiones Promotoras Genéticas , ARN/biosíntesis , Receptores de Glucocorticoides/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética/efectos de los fármacos , Animales , Ratones , ARN/genética
6.
J Cell Sci ; 137(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38995113

RESUMEN

Mechanosensing, or how cells sense and respond to the physical environment, is crucial for many aspects of biological function, ranging from cell movement during development to cancer metastasis, the immune response and gene expression driving cell fate determination. Relevant physical stimuli include the stiffness of the extracellular matrix, contractile forces, shear flows in blood vessels, complex topography of the cellular microenvironment and membrane protein mobility. Although mechanosensing has been more widely studied in non-immune cells, it has become increasingly clear that physical cues profoundly affect the signaling function of cells of the immune system. In this Review, we summarize recent studies on mechanical regulation of immune cells, specifically lymphocytes, and explore how the force-generating cytoskeletal machinery might mediate mechanosensing. We discuss general principles governing mechanical regulation of lymphocyte function, spanning from the molecular scale of receptor activation to cellular responses to mechanical stimuli.


Asunto(s)
Activación de Linfocitos , Mecanotransducción Celular , Humanos , Activación de Linfocitos/inmunología , Animales , Linfocitos/inmunología , Linfocitos/metabolismo , Citoesqueleto/metabolismo
7.
Nat Methods ; 19(11): 1427-1437, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36316563

RESUMEN

We present Richardson-Lucy network (RLN), a fast and lightweight deep learning method for three-dimensional fluorescence microscopy deconvolution. RLN combines the traditional Richardson-Lucy iteration with a fully convolutional network structure, establishing a connection to the image formation process and thereby improving network performance. Containing only roughly 16,000 parameters, RLN enables four- to 50-fold faster processing than purely data-driven networks with many more parameters. By visual and quantitative analysis, we show that RLN provides better deconvolution, better generalizability and fewer artifacts than other networks, especially along the axial dimension. RLN outperforms classic Richardson-Lucy deconvolution on volumes contaminated with severe out of focus fluorescence or noise and provides four- to sixfold faster reconstructions of large, cleared-tissue datasets than classic multi-view pipelines. We demonstrate RLN's performance on cells, tissues and embryos imaged with widefield-, light-sheet-, confocal- and super-resolution microscopy.


Asunto(s)
Algoritmos , Aprendizaje Profundo , Artefactos , Microscopía Fluorescente , Procesamiento de Imagen Asistido por Computador/métodos
8.
Nat Methods ; 18(6): 678-687, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34059829

RESUMEN

We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy four-dimensional super-resolution data, enabling image capture of over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables resolution enhancement equivalent to, or better than, other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy data as ground truth, achieving improvements of ~1.9-fold laterally and ~3.6-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluation and further enhancement of network performance.


Asunto(s)
Microscopía Fluorescente/métodos , Algoritmos , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador
9.
Nucleic Acids Res ; 49(12): 6605-6620, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-33592625

RESUMEN

Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs-one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.


Asunto(s)
Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Cinética , Ratones , Modelos Biológicos , Fotoblanqueo , Unión Proteica , Receptores de Glucocorticoides/metabolismo , Imagen Individual de Molécula
10.
Nat Methods ; 15(6): 425-428, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29735999

RESUMEN

We combined instant structured illumination microscopy (iSIM) with total internal reflection fluorescence microscopy (TIRFM) in an approach referred to as instant TIRF-SIM, thereby improving the lateral spatial resolution of TIRFM to 115 ± 13 nm without compromising speed, and enabling imaging frame rates up to 100 Hz over hundreds of time points. We applied instant TIRF-SIM to multiple live samples and achieved rapid, high-contrast super-resolution imaging close to the coverslip surface.


Asunto(s)
Microscopía Fluorescente/métodos , Línea Celular Tumoral , Humanos , Microtúbulos , Osteosarcoma , Proteínas de Unión al GTP rab/fisiología
11.
Cell Immunol ; 356: 104161, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32768663

RESUMEN

T cell responses to antigen are initiated by engagement of the T cell receptor (TCR)1, leading to activation of diverse signaling cascades, including an incompletely defined pathway that triggers rapid remodeling of the actin cytoskeleton. Defects in the control of actin dynamics and organization are associated with several human immunodeficiency diseases, emphasizing the importance of cytoskeletal remodeling in the functioning of the adaptive immune system. Here, we investigate the role of the adaptor protein Bcl102 in the control of actin dynamics. Although Bcl10 is primarily known as a component of the pathway connecting the TCR to activation of the NF-κB3 transcription factor, a few studies have implicated Bcl10 in antigen receptor-dependent control of actin polymerization and F-actin-dependent functional responses. However, the role of Bcl10 in the regulation of cytoskeletal dynamics remains largely undefined. To investigate the contribution of Bcl10 in the regulation of TCR-dependent cytoskeletal dynamics, we monitored actin dynamics at the immune synapse of primary murine CD8 effector T cells. Quantification of these dynamics reveals two distinct temporal phases distinguished by differences in speed and directionality. Our results indicate that effector CD8 T cells lacking Bcl10 display faster actin flows and more dynamic lamellipodia, compared to wild-type cells. These studies define a role for Bcl10 in TCR-dependent actin dynamics, emphasizing that Bcl10 has important cytoskeleton-directed functions that are likely independent of its role in transmission of NF-κB -activating signals.


Asunto(s)
Actinas/metabolismo , Proteína 10 de la LLC-Linfoma de Células B/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Actinas/inmunología , Animales , Proteína 10 de la LLC-Linfoma de Células B/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/inmunología , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , FN-kappa B/inmunología , FN-kappa B/metabolismo , Fosforilación , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/inmunología , Sinapsis/metabolismo
12.
PLoS Comput Biol ; 15(7): e1007156, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31287817

RESUMEN

Bundled actin structures play a key role in maintaining cellular shape, in aiding force transmission to and from extracellular substrates, and in affecting cellular motility. Recent studies have also brought to light new details on stress generation, force transmission and contractility of actin bundles. In this work, we are primarily interested in the question of what determines the stability of actin bundles and what network geometries do unstable bundles eventually transition to. To address this problem, we used the MEDYAN mechano-chemical force field, modeling several micron-long actin bundles in 3D, while accounting for a comprehensive set of chemical, mechanical and transport processes. We developed a hierarchical clustering algorithm for classification of the different long time scale morphologies in our study. Our main finding is that initially unipolar bundles are significantly more stable compared with an apolar initial configuration. Filaments within the latter bundles slide easily with respect to each other due to myosin activity, producing a loose network that can be subsequently severely distorted. At high myosin concentrations, a morphological transition to aster-like geometries was observed. We also investigated how actin treadmilling rates influence bundle dynamics, and found that enhanced treadmilling leads to network fragmentation and disintegration, while this process is opposed by myosin and crosslinking activities. Interestingly, treadmilling bundles with an initial apolar geometry eventually evolve to a whole gamut of network morphologies based on relative positions of filament ends, such as sarcomere-like organization. We found that apolar bundles show a remarkable sensitivity to environmental conditions, which may be important in enabling rapid cytoskeletal structural reorganization and adaptation in response to intracellular and extracellular cues.


Asunto(s)
Citoesqueleto de Actina/química , Citoesqueleto de Actina/fisiología , Animales , Fenómenos Biomecánicos , Biología Computacional , Simulación por Computador , Reactivos de Enlaces Cruzados , Modelos Biológicos , Complejos Multiproteicos/química , Complejos Multiproteicos/fisiología , Miosinas/química , Miosinas/fisiología , Estabilidad Proteica
13.
Proc Natl Acad Sci U S A ; 114(21): E4175-E4183, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28490501

RESUMEN

T-cell receptor (TCR) triggering and subsequent T-cell activation are essential for the adaptive immune response. Recently, multiple lines of evidence have shown that force transduction across the TCR complex is involved during TCR triggering, and that the T cell might use its force-generation machinery to probe the mechanical properties of the opposing antigen-presenting cell, giving rise to different signaling and physiological responses. Mechanistically, actin polymerization and turnover have been shown to be essential for force generation by T cells, but how these actin dynamics are regulated spatiotemporally remains poorly understood. Here, we report that traction forces generated by T cells are regulated by dynamic microtubules (MTs) at the interface. These MTs suppress Rho activation, nonmuscle myosin II bipolar filament assembly, and actin retrograde flow at the T-cell-substrate interface. Our results suggest a novel role of the MT cytoskeleton in regulating force generation during T-cell activation.


Asunto(s)
Actomiosina/metabolismo , Activación de Linfocitos/inmunología , Mecanotransducción Celular/inmunología , Microtúbulos/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Citoesqueleto de Actina/metabolismo , Inmunidad Adaptativa/inmunología , Células Presentadoras de Antígenos/inmunología , Línea Celular , Humanos , Células Jurkat , Proteínas de Unión al GTP rho/metabolismo
14.
Semin Cell Dev Biol ; 71: 137-145, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28830744

RESUMEN

Cells have a remarkable ability to sense and respond to the mechanical properties of their environment. Mechanosensing is essential for many phenomena, ranging from cell movements and tissue rearrangements to cell differentiation and the immune response. Cells of the immune system get activated when membrane receptors bind to cognate antigen on the surface of antigen presenting cells. Both T and B lymphocyte signaling has been shown to be responsive to physical forces and mechanical cues. Cytoskeletal forces exerted by cells likely mediate this mechanical modulation. Here, we discuss recent advances in the field of immune cell mechanobiology at the molecular and cellular scale.


Asunto(s)
Mecanotransducción Celular , Animales , Humanos , Sistema Inmunológico
15.
Phys Biol ; 14(6): 065003, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-28635615

RESUMEN

Cells can sense and adapt to mechanical properties of their environment. The local geometry of the extracellular matrix, such as its topography, has been shown to modulate cell morphology, migration, and proliferation. Here we investigate the effect of micro/nanotopography on the morphology and cytoskeletal dynamics of human pancreatic tumor-associated fibroblast cells (TAFs). We use arrays of parallel nanoridges with variable spacings on a subcellular scale to investigate the response of TAFs to the topography of their environment. We find that cell shape and stress fiber organization both align along the direction of the nanoridges. Our analysis reveals a strong bimodal relationship between the degree of alignment and the spacing of the nanoridges. Furthermore, focal adhesions align along ridges and form preferentially on top of the ridges. Tracking actin stress fiber movement reveals enhanced dynamics of stress fibers on topographically patterned surfaces. We find that components of the actin cytoskeleton move preferentially along the ridges with a significantly higher velocity along the ridges than on a flat surface. Our results suggest that a complex interplay between the actin cytoskeleton and focal adhesions coordinates the cellular response to micro/nanotopography.


Asunto(s)
Actinas/metabolismo , Fibroblastos Asociados al Cáncer/fisiología , Adhesión Celular , Adhesiones Focales/fisiología , Fibras de Estrés/metabolismo , Humanos , Nanoestructuras/análisis
16.
Proc Natl Acad Sci U S A ; 111(27): 9881-6, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24958882

RESUMEN

Prolonged or uncontrolled B-cell receptor (BCR) signaling is associated with autoimmunity. We previously demonstrated a role for actin in BCR signal attenuation. This study reveals that actin-binding protein 1 (Abp1/HIP-55/SH3P7) is a negative regulator of BCR signaling and links actin to negative regulatory pathways of the BCR. In both Abp1(-/-) and bone marrow chimeric mice, in which only B cells lack Abp1 expression, the number of spontaneous germinal center and marginal zone B cells and the level of autoantibody are significantly increased. Serum levels of T-independent antibody responses and total antibody are elevated, whereas T-dependent antibody responses are markedly reduced and fail to undergo affinity maturation. Upon activation, surface BCR clustering is enhanced and B-cell contraction delayed in Abp1(-/-) B cells, concurrent with slow but persistent increases in F-actin at BCR signalosomes. Furthermore, BCR signaling is enhanced in Abp1(-/-) B cells compared with wild-type B cells, including Ca(2+) flux and phosphorylation of B-cell linker protein, the mitogen-activated protein kinase kinase MEK1/2, and ERK, coinciding with reductions in recruitment of the inhibitory signaling molecules hematopoietic progenitor kinase 1 and SH2-containing inositol 5-phosphatase to BCR signalosomes. Our results indicate that Abp1 negatively regulates BCR signaling by coupling actin remodeling to B-cell contraction and activation of inhibitory signaling molecules, which contributes to the regulation of peripheral B-cell development and antibody responses.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Animales , Anticuerpos/sangre , Linfocitos B/citología , Centro Germinal/citología , Inositol Polifosfato 5-Fosfatasas , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Linfocitos T/inmunología
17.
Immunol Rev ; 256(1): 177-89, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24117821

RESUMEN

Upon recognizing cognate antigen, B cells mobilize multiple cellular apparatuses to propagate an optimal response. Antigen binding is transduced into cytoplasmic signaling events through B-cell antigen receptor (BCR)-based signalosomes at the B-cell surface. BCR signalosomes are dynamic and transient and are subsequently endocytosed for antigen processing. The function of BCR signalosomes is one of the determining factors for the fate of B cells: clonal expansion, anergy, or apoptosis. Accumulating evidence underscores the importance of the actin cytoskeleton in B-cell activation. We have begun to appreciate the role of actin dynamics in regulating BCR-mediated tonic signaling and the formation of BCR signalosomes. Our recent studies reveal an additional function of the actin cytoskeleton in the downregulation of BCR signaling, consequently contributing to the generation and maintenance of B-cell self-tolerance. In this review, we discuss how actin remodels its organization and dynamics in close coordination with BCR signaling and how actin remodeling in turn amplifies the activation and subsequent downregulation process of BCR signaling, providing vital feedback for optimal BCR activation.


Asunto(s)
Actinas/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Retroalimentación Fisiológica , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Animales , Humanos , Unión Proteica
18.
PLoS Biol ; 11(11): e1001704, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24223520

RESUMEN

Negative regulation of receptor signaling is essential for controlling cell activation and differentiation. In B-lymphocytes, the down-regulation of B-cell antigen receptor (BCR) signaling is critical for suppressing the activation of self-reactive B cells; however, the mechanism underlying the negative regulation of signaling remains elusive. Using genetically manipulated mouse models and total internal reflection fluorescence microscopy, we demonstrate that neuronal Wiskott-Aldrich syndrome protein (N-WASP), which is coexpressed with WASP in all immune cells, is a critical negative regulator of B-cell signaling. B-cell-specific N-WASP gene deletion causes enhanced and prolonged BCR signaling and elevated levels of autoantibodies in the mouse serum. The increased signaling in N-WASP knockout B cells is concurrent with increased accumulation of F-actin at the B-cell surface, enhanced B-cell spreading on the antigen-presenting membrane, delayed B-cell contraction, inhibition in the merger of signaling active BCR microclusters into signaling inactive central clusters, and a blockage of BCR internalization. Upon BCR activation, WASP is activated first, followed by N-WASP in mouse and human primary B cells. The activation of N-WASP is suppressed by Bruton's tyrosine kinase-induced WASP activation, and is restored by the activation of SH2 domain-containing inositol 5-phosphatase that inhibits WASP activation. Our results reveal a new mechanism for the negative regulation of BCR signaling and broadly suggest an actin-mediated mechanism for signaling down-regulation.


Asunto(s)
Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Proteína Neuronal del Síndrome de Wiskott-Aldrich/fisiología , Actinas/metabolismo , Animales , Anticuerpos Antinucleares/sangre , Antígenos/inmunología , Autoanticuerpos/sangre , Linfocitos B/inmunología , Células Cultivadas , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Transporte de Proteínas , Síndrome de Wiskott-Aldrich/inmunología , Síndrome de Wiskott-Aldrich/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
19.
Biochim Biophys Acta ; 1838(2): 569-78, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23886914

RESUMEN

The actin cytoskeleton is a dynamic cellular network known for its function in cell morphology and motility. Recent studies using high resolution and real time imaging techniques have revealed that actin plays a critical role in signal transduction, primarily by modulating the dynamics and organization of membrane-associated receptors and signaling molecules. This review summarizes what we have learned so far about a regulatory niche of the actin cytoskeleton in the signal transduction of the B cell receptor (BCR). The activation of the BCR is initiated and regulated by a close coordination between the dynamics of surface BCRs and the cortical actin network. The actin cytoskeleton is involved in regulating the signaling threshold of the BCR to antigenic stimulation, the kinetics and amplification of BCR signaling activities, and the timing and kinetics of signaling downregulation. Actin exerts its regulatory function by controlling the kinetics, magnitude, subcellular location, and nature of BCR clustering and BCR signaling complex formation at every stage of signaling. The cortical actin network is remodeled by initial detachment from the plasma membrane, disassembly and subsequent reassembly into new actin structures in response to antigenic stimulation. Signaling responsive actin regulators translate BCR stimulatory and inhibitory signals into a series of actin remodeling events, which enhance signaling activation and down-regulation by modulating the lateral mobility and spatial organization of surface BCR. The mechanistic understanding of actin-mediated signaling regulation in B cells will help us explore B cell-specific manipulations of the actin cytoskeleton as treatments for B cell-mediated autoimmunity and B cell cancer. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Animales , Humanos , Transducción de Señal
20.
Biophys J ; 106(1): 26-36, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24411234

RESUMEN

Antigen binding to the B cell receptor (BCR) induces receptor clustering, cell spreading, and the formation of signaling microclusters, triggering B cell activation. Although the biochemical pathways governing early B cell signaling have been well studied, the role of the physical properties of antigens, such as antigen mobility, has not been fully examined. We study the interaction of B cells with BCR ligands coated on glass or tethered to planar lipid bilayer surfaces to investigate the differences in B cell response to immobile and mobile ligands. Using high-resolution total internal reflection fluorescence (TIRF) microscopy of live cells, we followed the movement and spatial organization of BCR clusters and the associated signaling. Although ligands on either surface were able to cross-link BCRs and induce clustering, B cells interacting with mobile ligands displayed greater signaling than those interacting with immobile ligands. Quantitative analysis revealed that mobile ligands enabled BCR clusters to move farther and merge more efficiently than immobile ligands. These differences in physical reorganization of receptor clusters were associated with differences in actin remodeling. Perturbation experiments revealed that a dynamic actin cytoskeleton actively reorganized receptor clusters. These results suggest that ligand mobility is an important parameter for regulating B cell signaling.


Asunto(s)
Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Citoesqueleto de Actina/metabolismo , Animales , Línea Celular Tumoral , Fragmentos Fab de Inmunoglobulinas/metabolismo , Ligandos , Membrana Dobles de Lípidos/metabolismo , Ratones , Unión Proteica , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA