Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255760

RESUMEN

Noribogaine (noribo) is the primary metabolite from ibogaine, an atypical psychedelic alkaloid isolated from the root bark of the African shrub Tabernanthe iboga. The main objective of this study was to test the hypothesis that molecular, electrophysiological, and behavioral responses of noribo are mediated by the 5-HT2A receptor (5-HT2AR) in mice. In that regard, we used male and female, 5-HT2AR knockout (KO) and wild type (WT) mice injected with a single noribo dose (10 or 40 mg/kg; i.p.). After 30 min., locomotor activity was recorded followed by mRNA measurements by qPCR (immediate early genes; IEG, glutamate receptors, and 5-HT2AR levels) and electrophysiology recordings of layer V pyramidal neurons from the medial prefrontal cortex. Noribo 40 decreased locomotion in male, but not female WT. Sex and genotype differences were observed for IEG and glutamate receptor expression. Expression of 5-HT2AR mRNA increased in the mPFC of WT mice following Noribo 10 (males) or Noribo 40 (females). Patch-clamp recordings showed that Noribo 40 reduced the NMDA-mediated postsynaptic current density in mPFC pyramidal neurons only in male WT mice, but no effects were found for either KO males or females. Our results highlight that noribo produces sexually dimorphic effects while the genetic removal of 5HT2AR blunted noribo-mediated responses to NMDA synaptic transmission.


Asunto(s)
Ibogaína , Femenino , Masculino , Animales , Ratones , Ratones Noqueados , Ibogaína/farmacología , Receptor de Serotonina 5-HT2A/genética , N-Metilaspartato , Serotonina , Ácido Glutámico , ARN Mensajero
2.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36012437

RESUMEN

Denitrification consists of the sequential reduction of nitrate to nitrite, nitric oxide, nitrous oxide, and dinitrogen. Nitrous oxide escapes to the atmosphere, depending on copper availability and other environmental factors. Iron is also a key element because many proteins involved in denitrification contain iron-sulfur or heme centers. The NtrYX two-component regulatory system mediates the responses in a variety of metabolic processes, including denitrification. A quantitative proteomic analysis of a Paracoccus denitrificans NtrY mutant grown under denitrifying conditions revealed the induction of different TonB-dependent siderophore transporters and proteins related to iron homeostasis. This mutant showed lower intracellular iron content than the wild-type strain, and a reduced growth under denitrifying conditions in iron-limited media. Under iron-rich conditions, it releases higher concentrations of siderophores and displayes lower nitrous oxide reductase (NosZ) activity than the wild-type, thus leading to nitrous oxide emission. Bioinformatic and qRT-PCR analyses revealed that NtrYX is a global transcriptional regulatory system that responds to iron starvation and, in turn, controls expression of the iron-responsive regulators fur, rirA, and iscR, the denitrification regulators fnrP and narR, the nitric oxide-responsive regulator nnrS, and a wide set of genes, including the cd1-nitrite reductase NirS, nitrate/nitrite transporters and energy electron transport proteins.


Asunto(s)
Paracoccus denitrificans , Desnitrificación , Homeostasis , Hierro/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Óxido Nitroso/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Proteómica
3.
Am J Physiol Cell Physiol ; 318(2): C282-C288, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31747316

RESUMEN

The pedunculopontine nucleus (PPN) is part of the reticular activating system (RAS) in charge of arousal and rapid eye movement sleep. The presence of high-frequency membrane oscillations in the gamma-band range in the PPN has been extensively demonstrated both in vivo and in vitro. Our group previously described histone deacetylation (HDAC) inhibition in vitro induced protein changes in F-actin cytoskeleton and intracellular Ca2+ concentration regulation proteins in the PPN. Here, we present evidence that supports the presence of a fine balance between HDAC function and calcium calmodulin kinase II-F-actin interactions in the PPN. We modified F-actin polymerization in vitro by using jasplakinolide (1 µM, a promoter of F-actin stabilization), or latrunculin-B (1 µM, an inhibitor of actin polymerization). Our results showed that shifting the balance in either direction significantly reduced PPN gamma oscillation as well as voltage-dependent calcium currents.


Asunto(s)
Actinas/metabolismo , Epigénesis Genética/fisiología , Neuronas/metabolismo , Núcleo Tegmental Pedunculopontino/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Epigénesis Genética/genética , Femenino , Masculino , Potenciales de la Membrana/fisiología , Ratas , Ratas Sprague-Dawley
4.
Cereb Cortex ; 29(5): 2291-2304, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30877792

RESUMEN

Hyperpolarization-activated cation channels are involved, among other functions, in learning and memory, control of synaptic transmission and epileptogenesis. The importance of the HCN1 and HCN2 isoforms for brain function has been demonstrated, while the role of HCN4, the third major neuronal HCN subunit, is not known. Here we show that HCN4 is essential for oscillatory activity in the thalamocortical (TC) network. HCN4 is selectively expressed in various thalamic nuclei, excluding the thalamic reticular nucleus. HCN4-deficient TC neurons revealed a massive reduction of Ih and strongly reduced intrinsic burst firing, whereas the current was normal in cortical pyramidal neurons. In addition, evoked bursting in a thalamic slice preparation was strongly reduced in the mutant mice probes. HCN4-deficiency also significantly slowed down thalamic and cortical oscillations during active wakefulness. Taken together, these results establish that thalamic HCN4 channels are essential for the production of rhythmic intrathalamic oscillations and determine regular TC oscillatory activity during alert states.


Asunto(s)
Ondas Encefálicas , Corteza Cerebral/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Neuronas/fisiología , Tálamo/fisiología , Potenciales de Acción , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Neurológicos , Vías Nerviosas/fisiología
5.
Addict Biol ; 25(2): e12737, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-30811820

RESUMEN

Dysregulation of histone deacetylases (HDAC) has been proposed as a potential contributor to aberrant transcriptional profiles that can lead to changes in cognitive functions. It is known that METH negatively impacts the prefrontal cortex (PFC) leading to cognitive decline and addiction whereas modafinil enhances cognition and has a low abuse liability. We investigated if modafinil (90 mg/kg) and methamphetmine (METH) (1 mg/kg) may differentially influence the acetylation status of histones 3 and 4 (H3ac and H4ac) at proximal promoters of class I, II, III, and IV HDACs. We found that METH produced broader acetylation effects in comparison with modafinil in the medial PFC. For single dose, METH affected H4ac by increasing its acetylation at class I Hdac1 and class IIb Hdac10, decreasing it at class IIa Hdac4 and Hdac5. Modafinil increased H3ac and decreased H4ac of Hdac7. For mRNA, single-dose METH increased Hdac4 and modafinil increased Hdac7 expression. For repeated treatments (4 d after daily injections over 7 d), we found specific effects only for METH. We found that METH increased H4ac in class IIa Hdac4 and Hdac5 and decreased H3/H4ac at class I Hdac1, Hdac2, and Hdac8. At the mRNA level, repeated METH increased Hdac4 and decreased Hdac2. Class III and IV HDACs were only responsive to repeated treatments, where METH affected the H3/H4ac status of Sirt2, Sirt3, Sirt7, and Hdac11. Our results suggest that HDAC targets linked to the effects of modafinil and METH may be related to the cognitive-enhancing vs cognitive-impairing effects of these psychostimulants.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Histona Desacetilasas/efectos de los fármacos , Metanfetamina/farmacología , Modafinilo/farmacología , Corteza Prefrontal/efectos de los fármacos , Acetilación/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal/fisiopatología
6.
Bipolar Disord ; 21(2): 108-116, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30506611

RESUMEN

OBJECTIVES: This limited review examines the role of the reticular activating system (RAS), especially the pedunculopontine nucleus (PPN), one site of origin of bottom-up gamma, in the symptoms of bipolar disorder (BD). METHODS: The expression of neuronal calcium sensor protein 1 (NCS-1) in the brains of BD patients is increased. It has recently been found that all PPN neurons manifest intrinsic membrane beta/gamma frequency oscillations mediated by high threshold calcium channels, suggesting that it is one source of bottom-up gamma. This review specifically addresses the involvement of these channels in the manifestation of BD. RESULTS: Excess NCS-1 was found to dampen gamma band oscillations in PPN neurons. Lithium, a first line treatment for BD, was found to decrease the effects of NCS-1 on gamma band oscillations in PPN neurons. Moreover, gamma band oscillations appear to epigenetically modulate gene transcription in PPN neurons, providing a new direction for research in BD. CONCLUSIONS: This is an area needing much additional research, especially since the dysregulation of calcium channels may help explain many of the disorders of arousal in, elicit unwanted neuroepigenetic modulation in, and point to novel therapeutic avenues for, BD.


Asunto(s)
Trastorno Bipolar/metabolismo , Ritmo Gamma/fisiología , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Núcleo Tegmental Pedunculopontino/metabolismo , Animales , Trastorno Bipolar/genética , Trastorno Bipolar/patología , Canales de Calcio/metabolismo , Epigénesis Genética , Humanos , Neuronas/metabolismo , Neuronas/patología
7.
J Sci Food Agric ; 99(7): 3417-3425, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30609043

RESUMEN

BACKGROUND: Fatty acids are the major components in extra virgin olive oil, and they are considered as a quality parameter to its authentication. As fraudulent practices are the most important problem in this sector, fast, reliable and cost-effective techniques, such as Raman spectroscopy, have been successfully applied, in combination with chemometrics, to determine the fatty acid profile of oils. RESULTS: The huge amount of information provided by Raman spectra is reduced in a few orthogonal components of principal component analysis (PCA). The goodness-of-fit of the statistical models including only these PCA factors is considerably increased by introducing dummy variables, associated with the harvest, and some agro-climatic variables (temperature, humidity, wind speed, radiation, precipitation and evapotranspiration). Many of these additional variables are statistically relevant in models using either the global sample or subsamples of Andalusian provinces or olive varieties. CONCLUSIONS: The regression models using only Raman spectral information are clearly improved by the consideration of harvesting time and agro-climatic data, a useful result as trade standard applying to olive oils limits values for disaggregated fatty acids to authenticate olive oils. Nevertheless, the effect (or the statistical relevance) of these variables depends on the specific type of fatty acid, geographical region (province) or olive variety. © 2019 Society of Chemical Industry.


Asunto(s)
Ácidos Grasos/química , Olea/química , Aceite de Oliva/química , Clima , Análisis Discriminante , Frutas/química , Frutas/crecimiento & desarrollo , Olea/crecimiento & desarrollo , Análisis de Componente Principal , Espectrometría Raman
8.
J Neurosci ; 37(10): 2589-2599, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28159907

RESUMEN

Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in neurodegenerative diseases. We found that these channels can be activated in neurons of the medial nucleus of the trapezoid body (MNTB) of the auditory system in the CNS. A drop in extracellular pH induces transient inward ASIC currents (IASICs) in postsynaptic MNTB neurons from wild-type mice. The inhibition of IASICs by psalmotoxin-1 (PcTx1) and the absence of these currents in knock-out mice for ASIC-1a subunit (ASIC1a-/-) suggest that homomeric ASIC-1as are mediating these currents in MNTB neurons. Furthermore, we detect ASIC1a-dependent currents during synaptic transmission, suggesting an acidification of the synaptic cleft due to the corelease of neurotransmitter and H+ from synaptic vesicles. These currents are capable of eliciting action potentials in the absence of glutamatergic currents. A significant characteristic of these homomeric ASIC-1as is their permeability to Ca2+ Activation of ASIC-1a in MNTB neurons by exogenous H+ induces an increase in intracellular Ca2+ Furthermore, the activation of postsynaptic ASIC-1as during high-frequency stimulation (HFS) of the presynaptic nerve terminal leads to a PcTx1-sensitive increase in intracellular Ca2+ in MNTB neurons, which is independent of glutamate receptors and is absent in neurons from ASIC1a-/- mice. During HFS, the lack of functional ASICs in synaptic transmission results in an enhanced short-term depression of glutamatergic EPSCs. These results strongly support the hypothesis of protons as neurotransmitters and demonstrate that presynaptic released protons modulate synaptic transmission by activating ASIC-1as at the calyx of Held-MNTB synapse.SIGNIFICANCE STATEMENT The manuscript demonstrates that postsynaptic neurons of the medial nucleus of the trapezoid body at the mouse calyx of Held synapse express functional homomeric Acid-sensing ion channel-1a (ASIC-1as) that can be activated by protons (coreleased with neurotransmitter from acidified synaptic vesicles). These ASIC-1as contribute to the generation of postsynaptic currents and, more relevant, to calcium influx, which could be involved in the modulation of presynaptic transmitter release. Inhibition or deletion of ASIC-1a leads to enhanced short-term depression, demonstrating that they are concerned with short-term plasticity of the synapse. ASICs represent a widespread communication system with unique properties. We expect that our experiments will have an impact in the neurobiology field and will spread in areas related to neuronal plasticity.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Núcleo Coclear/fisiología , Potenciales Evocados Auditivos/fisiología , Activación del Canal Iónico/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Núcleo Coclear/química , Femenino , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Protones , Sinapsis/química
9.
Neurosignals ; 26(1): 66-76, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30261512

RESUMEN

Intrinsic, rhythmic subthreshold oscillations have been described in neurons of regions throughout the brain and have been found to influence the timing of action potentials induced by synaptic inputs. Some oscillations are sodium channel-dependent while others are calcium channel-dependent. These oscillations allow neurons to fire coherently at preferred frequencies and represent the main mechanism for maintaining high frequency network activity, especially in the cortex. Because cortical circuits are incapable of maintaining high frequency activity in the gamma range for prolonged periods, those processes dependent on continuous gamma band activity are subserved by subthreshold oscillations. As such, intrinsic oscillations, coupled with synaptic circuits, are essential to prolonged maintenance of such functions as sensory perception and "binding", problem solving, memory, waking, and rapid eye movement (REM) sleep.

10.
Molecules ; 22(12)2017 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-29258246

RESUMEN

Two series of catalysts were prepared by sol-gel and microemulsion synthetic procedure (SG and ME, respectively). Each series includes both pure Mg and Zr solids as well as Mg-Zr mixed solids with 25%, 50% and 75% nominal Zr content. The whole set of catalysts was characterized from thermal, structural and surface chemical points of view and subsequently applied to the liquid-phase xylose dehydration to furfural. Reactions were carried out in either a high-pressure autoclave or in an atmospheric pressure multi-reactor under a biphasic (organic/water) reaction mixture. Butan-2-ol and toluene were essayed as organic solvents. Catalysts prepared by microemulsion retained part of the surfactant used in the synthetic procedure, mainly associated with the Zr part of the solid. The MgZr-SG solid presented the highest surface acidity while the Mg3Zr-SG one exhibited the highest surface basicity among mixed systems. Xylose dehydration in the high-pressure system and with toluene/water solvent mixture led to the highest furfural yield. Moreover, the yield of furfural increases with the Zr content of the catalyst. Therefore, the catalysts constituted of pure ZrO2 (especially Zr-SG) are the most suitable to carry out the process under study although MgZr mixed solids could be also suitable for overall processes with additional reaction steps.


Asunto(s)
Furaldehído/química , Óxido de Magnesio/química , Xilosa/química , Circonio/química , Presión Atmosférica , Catálisis , Desecación , Emulsiones , Tolueno/química , Agua/química
11.
J Neurochem ; 136(3): 526-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26484945

RESUMEN

Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 µM) and high (100 µM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 µM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 µM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 µM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and thus facilitating GABA release.


Asunto(s)
Cafeína/farmacología , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Receptor de Serotonina 5-HT2A/metabolismo , Núcleos Talámicos/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Cloruro de Cadmio/farmacología , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Receptor de Serotonina 5-HT2A/genética , Serotonina/farmacología , Serotoninérgicos/farmacología , Núcleos Talámicos/metabolismo , Fosfolipasas de Tipo C/metabolismo
12.
Pharmacol Res ; 109: 108-18, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26826399

RESUMEN

In this review we describe how highly addictive psychostimulants such as cocaine and methamphetamine actions might underlie hypoexcitabilty in frontal cortical areas observed in clinical and preclinical models of psychostimulant abuse. We discuss new mechanisms that describe how increments on synaptic dopamine release are linked to reduce calcium influx in both pre and postsynaptic compartments on medial PFC networks, therefore modulating synaptic integration and information. Sustained DA neuromodulation by addictive psychostimulants can "lock" frontal cortical networks in deficient states. On the other hand, other psychostimulants such as modafinil and methylphenidate are considered pharmacological neuroenhancement agents that are popular among healthy people seeking neuroenhancement. More clinical and preclinical research is needed to further clarify mechanisms of actions and physiological effects of cognitive enhancers which show an opposite pattern compared to chronic effect of addictive psychostimulants: they appear to increase cortical excitability. In conclusion, studies summarized here suggest that there is frontal cortex hypoactivity and deficient inhibitory control in drug-addicted individuals. Thus, additional research on physiological effects of cognitive enhancers like modafinil and methylphenidate seems necessary in order to expand current knowledge on mechanisms behind their therapeutic role in the treatment of addiction and other neuropsychiatric disorders.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Dopamina/fisiología , Nootrópicos/farmacología , Corteza Prefrontal/efectos de los fármacos , Animales , Compuestos de Bencidrilo/farmacología , Cocaína/farmacología , Dopamina/metabolismo , Humanos , Metanfetamina/farmacología , Metilfenidato/farmacología , Modafinilo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Trastornos Relacionados con Sustancias/metabolismo , Trastornos Relacionados con Sustancias/fisiopatología
13.
Addict Biol ; 21(3): 589-602, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-25871318

RESUMEN

Psychostimulant addiction is associated with dysfunctions in frontal cortex. Previous data demonstrated that repeated exposure to methamphetamine (METH) can alter prefrontal cortex (PFC)-dependent functions. Here, we show that withdrawal from repetitive non-contingent METH administration (7 days, 1 mg/kg) depressed voltage-dependent calcium currents (ICa ) and increased hyperpolarization-activated cation current (IH ) amplitude and the paired-pulse ratio of evoked excitatory postsynaptic currents (EPSCs) in deep-layer pyramidal mPFC neurons. Most of these effects were blocked by systemic co-administration of the D1/D5 receptor antagonist SCH23390 (0.5 and 0.05 mg/kg). In vitro METH (i.e. bath-applied to slices from naïve-treated animals) was able to emulate its systemic effects on ICa and evoked EPSCs paired-pulse ratio. We also provide evidence of altered mRNA expression of (1) voltage-gated calcium channels P/Q-type Cacna1a (Cav 2.1), N-type Cacna1b (Cav 2.2), T-type Cav 3.1 Cacna1g, Cav 3.2 Cacna1h, Cav 3.3 Cacna1i and the auxiliary subunit Cacna2d1 (α2δ1); (2) hyperpolarization-activated cyclic nucleotide-gated channels Hcn1 and Hcn2; and (3) glutamate receptors subunits AMPA-type Gria1, NMDA-type Grin1 and metabotropic Grm1 in the mouse mPFC after repeated METH treatment. Moreover, we show that some of these changes in mRNA expression were sensitive D1/5 receptor blockade. Altogether, these altered mechanisms affecting synaptic physiology and transcriptional regulation may underlie PFC functional alterations that could lead to PFC impairments observed in METH-addicted individuals.


Asunto(s)
Calcio/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Metanfetamina/farmacología , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D5/metabolismo , Transmisión Sináptica/efectos de los fármacos , Animales , Benzazepinas/farmacología , Canales de Calcio/efectos de los fármacos , Canales de Calcio/genética , Canales de Calcio Tipo N/efectos de los fármacos , Canales de Calcio Tipo N/genética , Canales de Calcio Tipo T/efectos de los fármacos , Canales de Calcio Tipo T/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Masculino , Ratones , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Canales de Potasio/efectos de los fármacos , Canales de Potasio/genética , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , ARN Mensajero/metabolismo , Receptores AMPA/efectos de los fármacos , Receptores AMPA/genética , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D5/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/genética
14.
J Neurophysiol ; 113(3): 709-19, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25376789

RESUMEN

Reduced levels of gamma-band activity are present in schizophrenia and bipolar disorder patients. In the same disorders, increased neuronal calcium sensor protein-1 (NCS-1) expression was reported in a series of postmortem studies. These disorders are also characterized by sleep dysregulation, suggesting a role for the reticular activating system (RAS). The discovery of gamma-band activity in the pedunculopontine nucleus (PPN), the cholinergic arm of the RAS, revealed that such activity was mediated by high-threshold calcium channels that are regulated by NCS-1. We hypothesized that NCS-1 normally regulates gamma-band oscillations through these calcium channels and that excessive levels of NCS-1, such as would be expected with overexpression, decrease gamma-band activity. We found that PPN neurons in rat brain slices manifested gamma-band oscillations that were increased by low levels of NCS-1 but suppressed by high levels of NCS-1. Our results suggest that NCS-1 overexpression may be responsible for the decrease in gamma-band activity present in at least some schizophrenia and bipolar disorder patients.


Asunto(s)
Ritmo Gamma , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Núcleo Tegmental Pedunculopontino/fisiología , Animales , Trastorno Bipolar/metabolismo , Canales de Calcio/metabolismo , Proteínas Sensoras del Calcio Neuronal/genética , Neuronas/metabolismo , Neuronas/fisiología , Neuropéptidos/genética , Núcleo Tegmental Pedunculopontino/citología , Núcleo Tegmental Pedunculopontino/metabolismo , Ratas , Ratas Sprague-Dawley , Esquizofrenia/metabolismo
16.
Am J Physiol Cell Physiol ; 306(4): C396-406, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24336653

RESUMEN

Acid-sensing ion channels (ASIC) open in response to extracellular acidosis. ASIC1a, a particular subtype of these channels, has been described to have a postsynaptic distribution in the brain, being involved not only in ischemia and epilepsy, but also in fear and psychiatric pathologies. High-frequency stimulation of skeletal motor nerve terminals (MNTs) can induce presynaptic pH changes in combination with an acidification of the synaptic cleft, known to contribute to muscle fatigue. Here, we studied the role of ASIC1a channels on neuromuscular transmission. We combined a behavioral wire hanging test with electrophysiology, pharmacological, and immunofluorescence techniques to compare wild-type and ASIC1a lacking mice (ASIC1a (-/-) knockout). Our results showed that 1) ASIC1a (-/-) female mice were weaker than wild type, presenting shorter times during the wire hanging test; 2) spontaneous neurotransmitter release was reduced by ASIC1a activation, suggesting a presynaptic location of these channels at individual MNTs; 3) ASIC1a-mediated effects were emulated by extracellular local application of acid saline solutions (pH = 6.0; HEPES/MES-based solution); and 4) immunofluorescence techniques revealed the presence of ASIC1a antigens on MNTs. These results suggest that ASIC1a channels might be involved in controlling neuromuscular transmission, muscle contraction and fatigue in female mice.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Neuronas Motoras/metabolismo , Músculo Esquelético/inervación , Unión Neuromuscular/metabolismo , Transmisión Sináptica , Canales Iónicos Sensibles al Ácido/deficiencia , Canales Iónicos Sensibles al Ácido/genética , Animales , Conducta Animal , Estimulación Eléctrica , Potenciales Evocados Motores , Femenino , Fuerza de la Mano , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Noqueados , Placa Motora/metabolismo , Contracción Muscular , Fatiga Muscular , Terminales Presinápticos/metabolismo , Factores Sexuales , Factores de Tiempo
17.
Pflugers Arch ; 465(9): 1327-40, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23588378

RESUMEN

The parafascicular nucleus (Pf) is an ascending target of the pedunculopontine nucleus (PPN) and is part of the "non-specific" intralaminar thalamus. The PPN, part of the reticular activating system, is mainly involved in waking and rapid eye movement sleep. Gamma oscillations are evident in all Pf neurons and mediated by high threshold voltage-dependent N- and P/Q-type calcium channels. We tested the hypothesis that high-speed calcium imaging would reveal calcium-mediated oscillations in synchrony with patch clamp recorded oscillations during depolarizing current ramps. Patch-clamped 9 to 19-day-old rat Pf neurons (n = 148, dye filled n = 61, control n = 87) were filled with Fura 2, Bis Fura, or Oregon Green BAPTA-1. Calcium transients were generated during depolarizing current ramps and visualized with a high-speed, wide-field fluorescence imaging system. Cells manifested calcium transients with oscillations in both somatic and proximal dendrite fluorescence recordings. Fluorescent calcium transients were blocked with the nonspecific calcium channel blocker, cadmium, or the combination of ω-Agatoxin-IVA (AgA), a specific P/Q-type calcium channel blocker and ω-conotoxin-GVIA (CgTx), a specific N-type calcium channel blocker. We developed a viable methodology for studying high-speed oscillations without the use of multi-photon imaging systems.


Asunto(s)
Señalización del Calcio , Núcleos Talámicos Intralaminares/metabolismo , Potenciales de Acción , Animales , Bloqueadores de los Canales de Calcio/farmacología , Núcleos Talámicos Intralaminares/citología , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
18.
J Neurochem ; 126(6): 705-14, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23692342

RESUMEN

The pedunculopontine nucleus (PPN), the cholinergic arm of the reticular activating system, regulates waking and rapid eye movement sleep. Here, we demonstrate immunohistochemical labeling of the leptin receptor signaling isoform in PPN neurons, and investigated the effects of G-protein modulation and the leptin triple antagonist (TA) on the action of leptin in the PPN. Whole-cell patch clamp recordings were performed in rat brainstem slices from 9 to 17 day old pups. Previous results showed that leptin caused a partial blockade of sodium (I(Na)) and h-current (I(H)) in PPN neurons. TA (100 nM) reduced the blockade of I(Na) (~ 50% reduction) and I(H) (~ 93% reduction) caused by leptin. Intracellular guanosine 5'-[ß-thio]diphosphate trilithium salt (a G-protein inhibitor) significantly reduced the effect of leptin on I(Na) (~ 60% reduction) but not on I(H) (~ 25% reduction). Intracellular GTPγS (a G-protein activator) reduced the effect of leptin on both I(Na) (~ 80% reduction) and I(H) (~ 90% reduction). These results suggest that the effects of leptin on the intrinsic properties of PPN neurons are leptin receptor- and G-protein dependent. We also found that leptin enhanced NMDA receptor-mediated responses in single neurons and in the PPN population as a whole, an effect blocked by TA. These experiments further strengthen the association between leptin dysregulation and sleep disturbances. Beck et al. investigated the effects of leptin on the intrinsic properties of neurons from the pedunculopontine nucleus (PPN). Leptin reduced the amplitude of voltage-gated sodium (I(Na)) and hyperpolarization-activated cyclic nucleotide-gated HCN (I(H)) channels. These effects were antagonized by a leptin receptor (OB-R) antagonist and by the G-protein antagonist GDPß.


Asunto(s)
Proteínas de Unión al GTP/fisiología , Leptina/farmacología , Neuronas/efectos de los fármacos , Núcleo Tegmental Pedunculopontino/citología , Núcleo Tegmental Pedunculopontino/efectos de los fármacos , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Interpretación Estadística de Datos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Inmunohistoquímica , Leptina/antagonistas & inhibidores , Masculino , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Población , Canales de Potasio/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/fisiología , Canales de Sodio/fisiología
19.
J Neurochem ; 124(5): 602-12, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23205768

RESUMEN

Methylphenidate (MPH) is widely used to treat children and adolescents diagnosed with attention deficit/hyperactivity disorder. Although MPH shares mechanistic similarities to cocaine, its effects on GABAergic transmission in sensory thalamic nuclei are unknown. Our objective was to compare cocaine and MPH effects on GABAergic projections between thalamic reticular and ventrobasal (VB) nuclei. Mice (P18-30) were subjected to binge-like cocaine and MPH acute and sub-chronic administrations. Cocaine and MPH enhanced hyperlocomotion, although sub-chronic cocaine-mediated effects were stronger than MPH effects. Cocaine and MPH sub-chronic administration altered paired-pulse and spontaneous GABAergic input differently. The effects of cocaine on evoked paired-pulse GABA-mediated currents changed from depression to facilitation with the duration of the protocols used, while MPH induced a constant increase throughout the administration protocols. Thalamic reticular nucleus GAD67 and VB Ca(V) 3.1 protein levels were measured using western blot to better understand their link to increased GABA release. Both proteins were increased by sub-chronic administration of cocaine. MPH showed effects on GABAergic transmission that seems less disruptive than cocaine. Unique effects of cocaine on postsynaptic VB calcium currents might explain deleterious cocaine effects on sensory thalamic nuclei. These results suggest that cocaine and MPH produced distinct presynaptic alterations on GABAergic transmission.


Asunto(s)
Estimulantes del Sistema Nervioso Central/toxicidad , Cocaína/toxicidad , Metilfenidato/toxicidad , Transmisión Sináptica/efectos de los fármacos , Núcleos Talámicos/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Animales , Western Blotting , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Núcleos Talámicos/metabolismo
20.
J Neural Transm (Vienna) ; 120(7): 1027-38, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23263542

RESUMEN

Leptin, a hormone that regulates appetite and energy expenditure, is increased in obese individuals, although these individuals often exhibit leptin resistance. Obesity is characterized by sleep/wake disturbances, such as excessive daytime sleepiness, increased REM sleep, increased nighttime arousals, and decreased percentage of total sleep time. Several studies have shown that short sleep duration is highly correlated with decreased leptin levels in both animal and human models. Arousal and rapid eye movement (REM) sleep are regulated by the cholinergic arm of the reticular activating system, the pedunculopontine nucleus (PPN). The goal of this project was to determine the role of leptin in the PPN, and thus in obesity-related sleep disorders. Whole-cell patch-clamp recordings were conducted on PPN neurons in 9- to 17-day-old rat brainstem slices. Leptin decreased action potential (AP) amplitude, AP frequency, and h-current (I(H)). These findings suggest that leptin causes a blockade of Na⁺ channels. Therefore, we conducted an experiment to test the effects of leptin on Na⁺ conductance. To determine the average voltage dependence of this conductance, results from each cell were equally weighted by expressing conductance as a fraction of the maximum conductance in each cell. I Na amplitude was decreased in a dose-dependent manner, suggesting a direct effect of leptin on these channels. The average decrease in Na⁺ conductance by leptin was ~40 %. We hypothesize that leptin normally decreases activity in the PPN by reducing I(H) and I(Na) currents, and that in states of leptin dysregulation (i.e., leptin resistance) this effect may be blunted, therefore causing increased arousal and REM sleep drive, and ultimately leading to sleep-related disorders.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Fenómenos Biofísicos/efectos de los fármacos , Leptina/farmacología , Neuronas/efectos de los fármacos , Núcleo Tegmental Pedunculopontino/citología , Animales , Animales Recién Nacidos , Fenómenos Biofísicos/fisiología , Biofisica , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Femenino , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos , Masculino , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Embarazo , Ratas , Ratas Sprague-Dawley , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA