Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 20(4): 6683-99, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25884550

RESUMEN

Synthetic metalloporphyrin complexes are often used as analogues of natural systems, and they can be used for the preparation of new Solid Coordination Frameworks (SCFs). In this work, a series of six metalloporphyrinic compounds constructed from different meso substituted metalloporphyrins (phenyl, carboxyphenyl and sulfonatophenyl) have been structurally characterized by means of single crystal X-ray diffraction, IR spectroscopy and elemental analysis. The compounds were classified considering the dimensionality of the crystal array, referred just to coordination bonds, into 0D, 1D and 2D compounds. This way, the structural features and relationships of those crystal structures were analyzed, in order to extract conclusions not only about the dimensionality of the networks but also about possible applications of the as-obtained compounds, focusing the interest on the interactions of coordination and crystallization molecules. These interactions provide the coordination bonds and the cohesion forces which produce SCFs with different dimensionalities.


Asunto(s)
Complejos de Coordinación/química , Cristalización , Catálisis , Complejos de Coordinación/metabolismo , Cristalización/métodos , Cristalografía por Rayos X , Enlace de Hidrógeno , Metaloporfirinas/química , Metaloporfirinas/metabolismo , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Análisis Espectral , Termogravimetría
2.
Inorg Chem ; 52(14): 8074-81, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23799787

RESUMEN

Compound ([FeTPPbipy](•))n (TPP = meso-tetraphenylporphyrin and bipy = 4,4'-bipyridine) is the first example of a Fe-TPP-bipy coordination network, and it consists of 1D polymers packed through face-to-face and edge-to-face π-π interactions. The compound has been investigated by means of X-ray diffraction, IR, Mössbauer, UV-visible, and EPR spectroscopies, thermogravimetry, magnetic susceptibility measurements, and quantum-mechanical density functional theory (DFT) and time-dependent DFT calculations. The chemical formula for this compound can be confusing because it is compatible with Fe(II) and TPP(2-) anions. However, the spectroscopic and magnetic properties of this compound are consistent with the presence of low-spin Fe(III) ions and [FeTPPbipy](•) neutral radicals. These radicals are proposed to be formed by the reduction of metalloporphyrin, and the quantum-mechanical calculations are consistent with the fact that the acquired electrons are located on the phenyl groups of TPP.


Asunto(s)
Compuestos de Hierro/química , Metaloporfirinas/química , Porfirinas/química , Electrones , Modelos Moleculares , Piridinas/química , Teoría Cuántica , Difracción de Rayos X
3.
J Inorg Biochem ; 205: 110977, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31926376

RESUMEN

Metal-Organic Frameworks (MOFs) are porous coordination networks assembled through metal complexes with organic linkers. Due to their chemical versatility, these materials are being investigated for various applications including gas storage and separation, biomedicine and catalysis. The aim of this work is the encapsulation of the model ß-alanine amino-acid in the nanostructured zirconium-based MOF (UiO-66) which contains the ligand H2BDC (1,4-benzenedicaboxylic acid). Additionally, ligand functionalization (by using H2doBDC (2,5-dihydroxy-1,4-benzenedicarboxylic acid) and defect engineering have been carried out to produce UiO-66 derivatives, in order to modify the host-guest interactions, and hence study their influence on the ß-alanine loading capacity and release kinetics. The as-obtained materials have been characterized by X-ray diffraction (XRD), X-ray thermo diffraction (TDX), infrared (IR) spectroscopy, thermogravimetric analysis-differential scanning calorimetry (TG-DSC) and elemental analysis (EA). Morphology of nanoscale MOFs has been explored by transition electron microscopy (TEM). Adsorption isotherms have been constructed, and the concentration of ß-alanine in the post-adsorption solution (supernatant) has been quantified by high performance liquid chromatography coupled with mass spectroscopy (HPLC-MS) and EA. Adsorption capacity values indicate that the presence of hydroxyl groups at the organic linker H2doBDC enhances the host-guess affinity between the framework and the adsorbate ß-alanine. The influence of defect engineering, on the adsorption however, is not that obvious. On the other hand, desorption experiments show similar behaviour for H2doBDC-based derivatives. An adsorption mechanism has been proposed consisting of a combination of host-guest interaction at low concentrations, and covalent anchoring/ligand displacement by ß-alanine at the inorganic clusters.


Asunto(s)
Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/síntesis química , Circonio/química , beta-Alanina/química , Catálisis
4.
IUCrJ ; 5(Pt 5): 559-568, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30224959

RESUMEN

Heterogeneous catalysts are of great interest in many industrial processes for environmental reasons and, during recent years, a great effort has been devoted to obtain metal-organic frameworks (MOFs) with improved catalytic behaviour. Few supramolecular metal-organic frameworks (SMOFs) are stable under ambient conditions and those with anchored catalysts exhibit favourable properties. However, this paper presents an innovative approach that consists of using metal nodes as both structural synthons and catalysts. Regarding the latter, metalloporphyrins are suitable candidates to play both roles simultaneously. In fact, there are a number of papers that report coordination compounds based on metalloporphyrins exhibiting these features. Thus, the aim of this bioinspired work was to obtain stable SMOFs (at room temperature) based on metallo-porphyrins and explore their catalytic activity. This work reports the environmentally friendly microwave-assisted synthesis and characterization of the compound [H(bipy)]2[(MnTPPS)(H2O)2]·2bipy·14H2O (TPPS = meso-tetra-phenyl-porphine-4,4',4'',4'''-tetra-sulfonic acid and bipy = 4,4'-bi-pyridine). This compound is the first example of an MnTPPS-based SMOF, as far as we are aware, and has been structurally and thermally characterized through single-crystal X-ray diffraction, IR spectroscopy, thermogravimetry and transmission electron microscopy. Additionally, this work explores not only the catalytic activity of this compound but also of the compounds µ-O-[FeTCPP]2·16DMF and [CoTPPS0.5(bipy)(H2O)2]·6H2O. The structural features of these supra-molecular materials, with accessible networks and high thermal stability, are responsible for their excellent behaviour as heterogeneous catalysts for different oxidation, condensation (aldol and Knoevenagel) and one-pot cascade reactions.

5.
Dalton Trans ; 44(1): 213-22, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25371170

RESUMEN

During the past few years, a great deal of effort has been devoted to the anchoring of catalysts into solid coordination networks in order to achieve heterogeneous catalysts. In this sense, an innovative approach consists in using the coordination-network synthons both as structural units and as catalysts. Regarding the latter, metalloporphyrins are suitable candidates for synthons. In fact, a few studies report on coordination compounds based on metalloporphyrins exhibiting these features. On the other hand, highly distorted di-iron oxo dimers containing electron withdrawing groups rank amongst the most effective catalyst models. Thus, the aim of this work was to obtain coordination networks based on iron porphyrins exhibiting those characteristics. In this way, this work reports on the synthesis and characterisation of the µ-O-[FeTCPP]2·16DMF compound (H2TCPP = meso-tetra(4-carboxyphenyl)porphyrin, DMF = N,N-dimethylformamide). This compound is the first example of a µ-oxo dimer with TCPP. The inter-dimer connections give rise to a laminar structure. The structural, spectroscopic and magnetic properties of this compound are consistent with the presence of high-spin Fe(III) ions, exhibiting a strong antiferromagnetic coupling in the µ-oxo dimer (J = -132 cm(-1)). An unusual superhyperfine structure has been observed in EPR that is related to the high accessible volume of the compound. The structural features of the dimers and the accessible network are responsible for the excellent behaviour of the compound as a heterogeneous catalyst for different oxidations of alcohols. Therefore, this compound is one of the very few examples of metalloporphyrins where structural units act as catalysts.

6.
J Org Chem ; 70(8): 3178-87, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15822980

RESUMEN

Novel dibenzo[a,c]phenanthridines are prepared regioselectively by the application of a straightforward synthetic pathway, starting from new 3,4-diaryl- and 3,4-dihydro-3,4-diarylisoquinolines prepared via Ritter-type heterocyclization and the more classical two-step reductive amination/Bischler-Napieralski cyclization of triarylethanones, respectively. A comparative study of nonphenolic oxidative coupling methodologies provides a highly efficient procedure, based on the hypervalent iodine reagent phenyliodine(III) bis(trifluoroacetate) (PIFA), to accomplish the final coupling step.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA