Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Biol Chem ; 298(2): 101604, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35051417

RESUMEN

Store-operated Ca2+ entry (SOCE) is a major mechanism controlling Ca2+ signaling and Ca2+-dependent functions and has been implicated in immunity, cancer, and organ development. SOCE-dependent cytosolic Ca2+ signals are affected by mitochondrial Ca2+ transport through several competing mechanisms. However, how these mechanisms interact in shaping Ca2+ dynamics and regulating Ca2+-dependent functions remains unclear. In a recent issue, Yoast et al. shed light on these questions by defining multiple roles of the mitochondrial Ca2+ uniporter in regulating SOCE, Ca2+ dynamics, transcription, and lymphocyte activation.


Asunto(s)
Canales de Calcio , Calcio , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Citosol/metabolismo , Mitocondrias/metabolismo
2.
J Biol Chem ; 297(3): 101085, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34411562

RESUMEN

The complement cascade is a key component of the innate immune system that is rapidly recruited through a cascade of enzymatic reactions to enable the recognition and clearance of pathogens and promote tissue repair. Despite its well-understood role in immunology, recent studies have highlighted new and unexpected roles of the complement cascade in neuroimmune interaction and in the regulation of neuronal processes during development, aging, and in disease states. Complement signaling is particularly important in directing neuronal responses to tissue injury, neurotrauma, and nerve lesions. Under physiological conditions, complement-dependent changes in neuronal excitability, synaptic strength, and neurite remodeling promote nerve regeneration, tissue repair, and healing. However, in a variety of pathologies, dysregulation of the complement cascade leads to chronic inflammation, persistent pain, and neural dysfunction. This review describes recent advances in our understanding of the multifaceted cross-communication that takes place between the complement system and neurons. In particular, we focus on the molecular and cellular mechanisms through which complement signaling regulates neuronal excitability and synaptic plasticity in the nociceptive pathways involved in pain processing in both health and disease. Finally, we discuss the future of this rapidly growing field and what we believe to be the significant knowledge gaps that need to be addressed.


Asunto(s)
Vía Clásica del Complemento/inmunología , Neuroinmunomodulación/fisiología , Dolor Nociceptivo/fisiopatología , Animales , Activación de Complemento/inmunología , Proteínas del Sistema Complemento/inmunología , Humanos , Inmunidad Innata/fisiología , Neuroinmunomodulación/inmunología , Plasticidad Neuronal/fisiología , Neuronas , Nocicepción , Dolor Nociceptivo/inmunología , Dolor/inmunología , Dolor/fisiopatología , Transducción de Señal
3.
J Neurosci ; 40(15): 3119-3129, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32144179

RESUMEN

Mitochondrial fission catalyzed by dynamin-related protein 1 (Drp1) is necessary for mitochondrial biogenesis and maintenance of healthy mitochondria. However, excessive fission has been associated with multiple neurodegenerative disorders, and we recently reported that mice with smaller mitochondria are sensitized to ischemic stroke injury. Although pharmacological Drp1 inhibition has been put forward as neuroprotective, the specificity and mechanism of the inhibitor used is controversial. Here, we provide genetic evidence that Drp1 inhibition is neuroprotective. Drp1 is activated by dephosphorylation of an inhibitory phosphorylation site, Ser637. We identify Bß2, a mitochondria-localized protein phosphatase 2A (PP2A) regulatory subunit, as a neuron-specific Drp1 activator in vivo Bß2 KO mice of both sexes display elongated mitochondria in neurons and are protected from cerebral ischemic injury. Functionally, deletion of Bß2 and maintained Drp1 Ser637 phosphorylation improved mitochondrial respiratory capacity, Ca2+ homeostasis, and attenuated superoxide production in response to ischemia and excitotoxicity in vitro and ex vivo Last, deletion of Bß2 rescued excessive stroke damage associated with dephosphorylation of Drp1 S637 and mitochondrial fission. These results indicate that the state of mitochondrial connectivity and PP2A/Bß2-mediated dephosphorylation of Drp1 play a critical role in determining the severity of cerebral ischemic injury. Therefore, Bß2 may represent a target for prophylactic neuroprotective therapy in populations at high risk of stroke.SIGNIFICANCE STATEMENT With recent advances in clinical practice including mechanical thrombectomy up to 24 h after the ischemic event, there is resurgent interest in neuroprotective stroke therapies. In this study, we demonstrate reduced stroke damage in the brain of mice lacking the Bß2 regulatory subunit of protein phosphatase 2A, which we have shown previously acts as a positive regulator of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). Importantly, we provide evidence that deletion of Bß2 can rescue excessive ischemic damage in mice lacking the mitochondrial PKA scaffold AKAP1, apparently via opposing effects on Drp1 S637 phosphorylation. These results highlight reversible phosphorylation in bidirectional regulation of Drp1 activity and identify Bß2 as a potential pharmacological target to protect the brain from stroke injury.


Asunto(s)
Isquemia Encefálica/genética , Isquemia Encefálica/prevención & control , Dinaminas/genética , Neuronas/metabolismo , Animales , Calcio/metabolismo , Dinaminas/metabolismo , Femenino , Homeostasis , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Fosforilación , Cultivo Primario de Células , Proteína Fosfatasa 2/genética , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/prevención & control , Superóxidos/metabolismo
4.
J Neurosci ; 38(38): 8233-8242, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30093535

RESUMEN

Mitochondrial fission and fusion impact numerous cellular functions and neurons are particularly sensitive to perturbations in mitochondrial dynamics. Here we describe that male mice lacking the mitochondrial A-kinase anchoring protein 1 (AKAP1) exhibit increased sensitivity in the transient middle cerebral artery occlusion model of focal ischemia. At the ultrastructural level, AKAP1-/- mice have smaller mitochondria and increased contacts between mitochondria and the endoplasmic reticulum in the brain. Mechanistically, deletion of AKAP1 dysregulates complex II of the electron transport chain, increases superoxide production, and impairs Ca2+ homeostasis in neurons subjected to excitotoxic glutamate. Ca2+ deregulation in neurons lacking AKAP1 can be attributed to loss of inhibitory phosphorylation of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1) at the protein kinase A (PKA) site Ser637. Our results indicate that inhibition of Drp1-dependent mitochondrial fission by the outer mitochondrial AKAP1/PKA complex protects neurons from ischemic stroke by maintaining respiratory chain activity, inhibiting superoxide production, and delaying Ca2+ deregulation. They also provide the first genetic evidence that Drp1 inhibition may be of therapeutic relevance for the treatment of stroke and neurodegeneration.SIGNIFICANCE STATEMENT Previous work suggests that activation of dynamin-related protein 1 (Drp1) and mitochondrial fission contribute to ischemic injury in the brain. However, the specificity and efficacy of the pharmacological Drp1 inhibitor mdivi-1 that was used has now been discredited by several high-profile studies. Our report is timely and highly impactful because it provides the first evidence that genetic disinhibition of Drp1 via knock-out of the mitochondrial protein kinase A (PKA) scaffold AKAP1 exacerbates stroke injury in mice. Mechanistically, we show that electron transport deficiency, increased superoxide production, and Ca2+ overload result from genetic disinhibition of Drp1. In summary, our work settles current controversies regarding the role of mitochondrial fission in neuronal injury, provides mechanisms, and suggests that fission inhibitors hold promise as future therapeutic agents.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Isquemia Encefálica/metabolismo , Dinaminas/metabolismo , Dinámicas Mitocondriales/fisiología , Accidente Cerebrovascular/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Isquemia Encefálica/genética , Calcio/metabolismo , Dinaminas/genética , Complejo II de Transporte de Electrones/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Fosforilación , Accidente Cerebrovascular/genética , Superóxidos/metabolismo
5.
J Neurosci ; 38(32): 7032-7057, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29976627

RESUMEN

Injury, inflammation, and nerve damage initiate a wide variety of cellular and molecular processes that culminate in hyperexcitation of sensory nerves, which underlies chronic inflammatory and neuropathic pain. Using behavioral readouts of pain hypersensitivity induced by angiotensin II (Ang II) injection into mouse hindpaws, our study shows that activation of the type 2 Ang II receptor (AT2R) and the cell-damage-sensing ion channel TRPA1 are required for peripheral mechanical pain sensitization induced by Ang II in male and female mice. However, we show that AT2R is not expressed in mouse and human dorsal root ganglia (DRG) sensory neurons. Instead, expression/activation of AT2R on peripheral/skin macrophages (MΦs) constitutes a critical trigger of mouse and human DRG sensory neuron excitation. Ang II-induced peripheral mechanical pain hypersensitivity can be attenuated by chemogenetic depletion of peripheral MΦs. Furthermore, AT2R activation in MΦs triggers production of reactive oxygen/nitrogen species, which trans-activate TRPA1 on mouse and human DRG sensory neurons via cysteine modification of the channel. Our study thus identifies a translatable immune cell-to-sensory neuron signaling crosstalk underlying peripheral nociceptor sensitization. This form of cell-to-cell signaling represents a critical peripheral mechanism for chronic pain and thus identifies multiple druggable analgesic targets.SIGNIFICANCE STATEMENT Pain is a widespread health problem that is undermanaged by currently available analgesics. Findings from a recent clinical trial on a type II angiotensin II receptor (AT2R) antagonist showed effective analgesia for neuropathic pain. AT2R antagonists have been shown to reduce neuropathy-, inflammation- and bone cancer-associated pain in rodents. We report that activation of AT2R in macrophages (MΦs) that infiltrate the site of injury, but not in sensory neurons, triggers an intercellular redox communication with sensory neurons via activation of the cell damage/pain-sensing ion channel TRPA1. This MΦ-to-sensory neuron crosstalk results in peripheral pain sensitization. Our findings provide an evidence-based mechanism underlying the analgesic action of AT2R antagonists, which could accelerate the development of efficacious non-opioid analgesic drugs for multiple pain conditions.


Asunto(s)
Angiotensina II/fisiología , Hiperalgesia/fisiopatología , Macrófagos Peritoneales/metabolismo , Neuralgia/fisiopatología , Receptor de Angiotensina Tipo 2/fisiología , Células Receptoras Sensoriales/fisiología , Canal Catiónico TRPA1/fisiología , Angiotensina II/toxicidad , Antagonistas de Receptores de Angiotensina/farmacología , Animales , Comunicación Celular/fisiología , Células Cultivadas , Femenino , Ganglios Espinales/citología , Genes Reporteros , Humanos , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Imidazoles/farmacología , Activación de Macrófagos , Macrófagos Peritoneales/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/tratamiento farmacológico , Activación Neutrófila , Oxidación-Reducción , Piridinas/farmacología , Receptor de Angiotensina Tipo 2/genética , Células Receptoras Sensoriales/química , Piel/citología , Canal Catiónico TRPA1/deficiencia , Tacrolimus/análogos & derivados , Tacrolimus/farmacología
6.
J Biol Chem ; 293(40): 15652-15663, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30154242

RESUMEN

Ca2+ influx into mitochondria is mediated by the mitochondrial calcium uniporter (MCU), whose identity was recently revealed as a 40-kDa protein that along with other proteins forms the mitochondrial Ca2+ uptake machinery. The MCU is a Ca2+-conducting channel spanning the inner mitochondrial membrane. Here, deletion of the MCU completely inhibited Ca2+ uptake in liver, heart, and skeletal muscle mitochondria. However, in brain nonsynaptic and synaptic mitochondria from neuronal somata/glial cells and nerve terminals, respectively, the MCU deletion slowed, but did not completely block, Ca2+ uptake. Under resting conditions, brain MCU-KO mitochondria remained polarized, and in brain MCU-KO mitochondria, the electrophoretic Ca2+ ionophore ETH129 significantly accelerated Ca2+ uptake. The residual Ca2+ uptake in brain MCU-KO mitochondria was insensitive to inhibitors of mitochondrial Na+/Ca2+ exchanger and ryanodine receptor (CGP37157 and dantrolene, respectively), but was blocked by the MCU inhibitor Ru360. Respiration of WT and MCU-KO brain mitochondria was similar except that for mitochondria that oxidized pyruvate and malate, Ca2+ more strongly inhibited respiration in WT than in MCU-KO mitochondria. Of note, the MCU deletion significantly attenuated but did not completely prevent induction of the permeability transition pore (PTP) in brain mitochondria. Expression level of cyclophilin D and ATP content in mitochondria, two factors that modulate PTP induction, were unaffected by MCU-KO, whereas ADP was lower in MCU-KO than in WT brain mitochondria. Our results suggest the presence of an MCU-independent Ca2+ uptake pathway in brain mitochondria that mediates residual Ca2+ influx and induction of PTP in a fraction of the mitochondrial population.


Asunto(s)
Encéfalo/metabolismo , Canales de Calcio/genética , Calcio/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Neuronas/metabolismo , Animales , Encéfalo/efectos de los fármacos , Canales de Calcio/deficiencia , Ciclohexanos/farmacología , Dantroleno/farmacología , Femenino , Eliminación de Gen , Transporte Iónico/efectos de los fármacos , Ionóforos/farmacología , Malatos/metabolismo , Malatos/farmacología , Masculino , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Neuronas/efectos de los fármacos , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacología , Compuestos de Rutenio/farmacología , Tiazepinas/farmacología
7.
J Neurosci Res ; 97(11): 1393-1413, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31452242

RESUMEN

Microtubule-associated protein tau associates with Src family tyrosine kinase Fyn and is tyrosine phosphorylated by Fyn. The presence of tyrosine phosphorylated tau in AD and the involvement of Fyn in AD has drawn attention to the tau-Fyn complex. In this study, a tau-Fyn double knockout (DKO) mouse was generated to investigate the role of the complex. DKO mice resembled Fyn KO in novel object recognition and contextual fear conditioning tasks and resembled tau KO mice in the pole test and protection from pentylenetetrazole-induced seizures. In glutamate-induced Ca2+ response, Fyn KO was decreased relative to WT and DKO had a greater reduction relative to Fyn KO, suggesting that tau may have a Fyn-independent role. Since tau KO resembled WT in its Ca2+ response, we investigated whether microtubule-associated protein 2 (MAP2) served to compensate for tau, since the MAP2 level was increased in tau KO but decreased in DKO mice. We found that like tau, MAP2 increased Fyn activity. Moreover, tau KO neurons had increased density of dendritic MAP2-Fyn complexes relative to WT neurons. Therefore, we hypothesize that in the tau KO, the absence of tau would be compensated by MAP2, especially in the dendrites, where tau-Fyn complexes are of critical importance. In the DKO, decreased levels of MAP2 made compensation more difficult, thus revealing the effect of tau in the Ca2+ response.


Asunto(s)
Calcio/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Convulsiones/metabolismo , Proteínas tau/metabolismo , Animales , Conducta Animal , Femenino , Hipocampo/metabolismo , Masculino , Ratones Noqueados , Proteínas Proto-Oncogénicas c-fyn/genética , Convulsiones/inducido químicamente , Proteínas tau/genética
8.
J Neurosci ; 36(18): 5055-70, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27147658

RESUMEN

UNLABELLED: The complement cascade is a principal component of innate immunity. Recent studies have underscored the importance of C5a and other components of the complement system in inflammatory and neuropathic pain, although the underlying mechanisms are largely unknown. In particular, it is unclear how the complement system communicates with nociceptors and which ion channels and receptors are involved. Here we demonstrate that inflammatory thermal and mechanical hyperalgesia induced by complete Freund's adjuvant was accompanied by C5a upregulation and was markedly reduced by C5a receptor (C5aR1) knock-out or treatment with the C5aR1 antagonist PMX53. Direct administration of C5a into the mouse hindpaw produced strong thermal hyperalgesia, an effect that was absent in TRPV1 knock-out mice, and was blocked by the TRPV1 antagonist AMG9810. Immunohistochemistry of mouse plantar skin showed prominent expression of C5aR1 in macrophages. Additionally, C5a evoked strong Ca(2+) mobilization in macrophages. Macrophage depletion in transgenic macrophage Fas-induced apoptosis mice abolished C5a-dependent thermal hyperalgesia. Examination of inflammatory mediators following C5a injection revealed a rapid upregulation of NGF, a mediator known to sensitize TRPV1. Preinjection of an NGF-neutralizing antibody or Trk inhibitor GNF-5837 prevented C5a-induced thermal hyperalgesia. Notably, NGF-induced thermal hyperalgesia was unaffected by macrophage depletion. Collectively, these results suggest that complement fragment C5a induces thermal hyperalgesia by triggering macrophage-dependent signaling that involves mobilization of NGF and NGF-dependent sensitization of TRPV1. Our findings highlight the importance of macrophage-to-neuron signaling in pain processing and identify C5a, NGF, and TRPV1 as key players in this cross-cellular communication. SIGNIFICANCE STATEMENT: This study provides mechanistic insight into how the complement system, a key component of innate immunity, regulates the development of pain hypersensitivity. We demonstrate a crucial role of the C5a receptor, C5aR1, in the development of inflammatory thermal and mechanical sensitization. By focusing on the mechanisms of C5a-induced thermal hyperalgesia, we show that this process requires recruitment of macrophages and initiation of macrophage-to-nociceptor signaling. At the molecular level, we demonstrate that this signaling depends on NGF and is mediated by the heat-sensitive nociceptive channel TRPV1. This deeper understanding of how immune cells and neurons interact to regulate pain processing is expected to facilitate mechanism-based approaches in the development of new analgesics.


Asunto(s)
Complemento C5a/metabolismo , Hiperalgesia/fisiopatología , Macrófagos , Factor de Crecimiento Nervioso , Nociceptores , Transducción de Señal , Canales Catiónicos TRPV , Acrilamidas/farmacología , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Comunicación Celular , Complemento C5a/genética , Femenino , Calor , Inflamación/inducido químicamente , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Factor de Crecimiento Nervioso/antagonistas & inhibidores , Estimulación Física , Canales Catiónicos TRPV/antagonistas & inhibidores
9.
Anesthesiology ; 127(4): 695-708, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28640016

RESUMEN

BACKGROUND: H2O2 has a variety of actions in skin wounds but has been rarely studied in deep muscle tissue. Based on response to the transient receptor potential ankyrin 1 antagonists after plantar incision, we hypothesized that H2O2 exerts nociceptive effects via the transient receptor potential ankyrin 1 in muscle. METHODS: Nociceptive behaviors in rats (n = 269) and mice (n = 16) were evaluated after various concentrations and volumes of H2O2 were injected into the gastrocnemius muscle or subcutaneous tissue. The effects of H2O2 on in vivo spinal dorsal horn neuronal activity and lumbar dorsal root ganglia neurons in vitro were evaluated from 26 rats and 6 mice. RESULTS: Intramuscular (mean ± SD: 1,436 ± 513 s) but not subcutaneous (40 ± 58 s) injection of H2O2 (100 mM, 0.6 ml) increased nociceptive time. Conditioned place aversion was evident after intramuscular (-143 ± 81 s) but not subcutaneous (-2 ± 111 s) injection of H2O2. These H2O2-induced behaviors were blocked by transient receptor potential ankyrin 1 antagonists. Intramuscular injection of H2O2 caused sustained in vivo activity of dorsal horn neurons, and H2O2 activated a subset of dorsal root ganglia neurons in vitro. Capsaicin nerve block decreased guarding after plantar incision and reduced nociceptive time after intramuscular H2O2. Nociceptive time after intramuscular H2O2 in transient receptor potential ankyrin 1 knockout mice was shorter (173 ± 156 s) compared with wild-type mice (931 ± 629 s). CONCLUSIONS: The greater response of muscle tissue to H2O2 may help explain why incision that includes deep muscle but not skin incision alone produces spontaneous activity in nociceptive pathways.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Músculo Esquelético/efectos de los fármacos , Nocicepción/efectos de los fármacos , Canales Catiónicos TRPC/efectos de los fármacos , Animales , Antiinfecciosos Locales/farmacología , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/efectos de los fármacos , Masculino , Nociceptores/efectos de los fármacos , Células del Asta Posterior/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/genética
10.
J Biol Chem ; 289(45): 31349-60, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25231981

RESUMEN

The Ca(2+)/calcineurin-dependent transcription factor nuclear factor of activated T-cells (NFAT) plays an important role in regulating many neuronal functions, including excitability, axonal growth, synaptogenesis, and neuronal survival. NFAT can be activated by action potential firing or depolarization that leads to Ca(2+)/calcineurin-dependent dephosphorylation of NFAT and its translocation to the nucleus. Recent data suggest that NFAT and NFAT-dependent functions in neurons can also be potently regulated by NGF and other neurotrophins. However, the mechanisms of NFAT regulation by neurotrophins are not well understood. Here, we show that in dorsal root ganglion sensory neurons, NGF markedly facilitates NFAT-mediated gene expression induced by mild depolarization. The effects of NGF were not associated with changes in [Ca(2+)]i and were independent of phospholipase C activity. Instead, the facilitatory effect of NGF depended on activation of the PI3K/Akt pathway downstream of the TrkA receptor and on inhibition of glycogen synthase kinase 3ß (GSK3ß), a protein kinase known to phosphorylate NFAT and promote its nuclear export. Knockdown or knockout of NFATc3 eliminated this facilitatory effect. Simultaneous monitoring of EGFP-NFATc3 nuclear translocation and [Ca(2+)]i changes in dorsal root ganglion neurons indicated that NGF slowed the rate of NFATc3 nuclear export but did not affect its nuclear import rate. Collectively, our data suggest that NGF facilitates depolarization-induced NFAT activation by stimulating PI3K/Akt signaling, inactivating GSK3ß, and thereby slowing NFATc3 export from the nucleus. We propose that NFAT serves as an integrator of neurotrophin action and depolarization-driven calcium signaling to regulate neuronal gene expression.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Factores de Transcripción NFATC/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transporte Activo de Núcleo Celular , Animales , Animales Recién Nacidos , Calcio/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Glucógeno Sintasa Quinasa 3 beta , Ratones , Ratones Endogámicos BALB C , Neuronas/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Receptor trkA/metabolismo , Transducción de Señal
11.
Biochem J ; 464(1): 13-22, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25164254

RESUMEN

Ca2+ is a key intermediary in a variety of signalling pathways and undergoes dynamic changes in its cytoplasmic concentration due to release from stores within the endoplasmic reticulum (ER) and influx from the extracellular environment. In addition to regulating cytoplasmic Ca2+ signals, these responses also affect the concentration of Ca2+ within the ER and mitochondria. Single fluorescent protein-based Ca2+ indicators, such as the GCaMP series based on GFP, are powerful tools for imaging changes in the concentration of Ca2+ associated with intracellular signalling pathways. Most GCaMP-type indicators have dissociation constants (Kd) for Ca2+ in the high nanomolar to low micromolar range and are therefore optimal for measuring cytoplasmic [Ca2+], but poorly suited for use in mitochondria and ER where [Ca2+] can reach concentrations of several hundred micromolar. We now report GCaMP-type low-affinity red fluorescent genetically encoded Ca2+ indicators for optical imaging (LAR-GECO), engineered to have Kd values of 24 µM (LAR-GECO1) and 12 µM (LAR-GECO1.2). We demonstrate that these indicators can be used to image mitochondrial and ER Ca2+ dynamics in several cell types. In addition, we perform two-colour imaging of intracellular Ca2+ dynamics in cells expressing both cytoplasmic GCaMP and ER-targeted LAR-GECO1. The development of these low-affinity intensiometric red fluorescent Ca2+ indicators enables monitoring of ER and mitochondrial Ca2+ in combination with GFP-based reporters.


Asunto(s)
Calcio/análisis , Retículo Endoplásmico/química , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Mitocondrias/química , Ingeniería de Proteínas/métodos , Animales , Células Cultivadas , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/química , Células HEK293 , Células HeLa , Humanos , Proteínas Luminiscentes/química , Ratones , Ratones Endogámicos C57BL , Estructura Secundaria de Proteína , Proteína Fluorescente Roja
12.
PLoS Biol ; 9(4): e1000612, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21526220

RESUMEN

Mitochondrial shape is determined by fission and fusion reactions catalyzed by large GTPases of the dynamin family, mutation of which can cause neurological dysfunction. While fission-inducing protein phosphatases have been identified, the identity of opposing kinase signaling complexes has remained elusive. We report here that in both neurons and non-neuronal cells, cAMP elevation and expression of an outer-mitochondrial membrane (OMM) targeted form of the protein kinase A (PKA) catalytic subunit reshapes mitochondria into an interconnected network. Conversely, OMM-targeting of the PKA inhibitor PKI promotes mitochondrial fragmentation upstream of neuronal death. RNAi and overexpression approaches identify mitochondria-localized A kinase anchoring protein 1 (AKAP1) as a neuroprotective and mitochondria-stabilizing factor in vitro and in vivo. According to epistasis studies with phosphorylation site-mutant dynamin-related protein 1 (Drp1), inhibition of the mitochondrial fission enzyme through a conserved PKA site is the principal mechanism by which cAMP and PKA/AKAP1 promote both mitochondrial elongation and neuronal survival. Phenocopied by a mutation that slows GTP hydrolysis, Drp1 phosphorylation inhibits the disassembly step of its catalytic cycle, accumulating large, slowly recycling Drp1 oligomers at the OMM. Unopposed fusion then promotes formation of a mitochondrial reticulum, which protects neurons from diverse insults.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mitocondrias/fisiología , Neuronas/fisiología , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colforsina/farmacología , AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Dinaminas/metabolismo , Hipocampo/citología , Hipocampo/enzimología , Homeostasis , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Forma de los Orgánulos/efectos de los fármacos , Fosforilación , Multimerización de Proteína , Transporte de Proteínas , Ratas
13.
J Neurosci ; 32(35): 11942-55, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22933780

RESUMEN

Natriuretic peptides (NPs) control natriuresis and normalize changes in blood pressure. Recent studies suggest that NPs are also involved in the regulation of pain sensitivity, although the underlying mechanisms remain essentially unknown. Many biological effects of NPs are mediated by guanylate cyclase (GC)-coupled NP receptors, NPR-A and NPR-B, whereas the third NP receptor, NPR-C, lacks the GC kinase domain and acts as the NP clearance receptor. In addition, NPR-C can couple to specific Gα(i)-Gßγ-mediated intracellular signaling cascades in numerous cell types. We found that NPR-C is coexpressed in transient receptor potential vanilloid-1 (TRPV1)-expressing mouse dorsal root ganglia (DRG) neurons. NPR-C can be coimmunoprecipitated with Gα(i), and C-type natriuretic peptide (CNP) treatment induced translocation of protein kinase Cε (PKCε) to the plasma membrane of these neurons, which was inhibited by pertussis toxin pretreatment. Application of CNP potentiated capsaicin- and proton-activated TRPV1 currents in cultured mouse DRG neurons and increased their firing frequency, an effect that was absent in DRG neurons from TRPV1(-/-) mice. CNP-induced sensitization of TRPV1 activity was attenuated by pretreatment of DRG neurons with the specific inhibitors of Gßγ, phospholipase C-ß (PLCß), or PKC, but not of protein kinase A, and was abolished by mutations at two PKC phosphorylation sites in TRPV1. Furthermore, CNP injection into mouse hindpaw led to the development of thermal hyperalgesia that was attenuated by administration of specific inhibitors of Gßγ or TRPV1 and was also absent in TRPV1(-/-) mice. Thus, our work identifies the Gßγ-PLCß-PKC-dependent potentiation of TRPV1 as a novel signaling cascade recruited by CNP in mouse DRG neurons that can lead to enhanced nociceptor excitability and thermal hypersensitivity.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/fisiología , Subunidades gamma de la Proteína de Unión al GTP/fisiología , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Péptido Natriurético Tipo-C/fisiología , Canales Catiónicos TRPV/fisiología , Animales , Células Cultivadas , Ganglios Espinales/metabolismo , Células HEK293 , Calor/efectos adversos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ratas , Canales Catiónicos TRPV/deficiencia
14.
J Physiol ; 591(10): 2443-62, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23381900

RESUMEN

The central processes of primary nociceptors form synaptic connections with the second-order nociceptive neurons located in the dorsal horn of the spinal cord. These synapses gate the flow of nociceptive information from the periphery to the CNS, and plasticity at these synapses contributes to centrally mediated hyperalgesia and allodynia. Although exocytosis and synaptic plasticity are controlled by Ca(2+) at the release sites, the mechanisms underlying presynaptic Ca(2+) signalling at the nociceptive synapses are not well characterized. We examined the presynaptic mechanisms regulating Ca(2+) clearance following electrical stimulation in capsaicin-sensitive nociceptors using a dorsal root ganglion (DRG)/spinal cord neuron co-culture system. Cytosolic Ca(2+) concentration ([Ca(2+)]i) recovery following electrical stimulation was well approximated by a monoexponential function with a ∼2 s. Inhibition of sarco-endoplasmic reticulum Ca(2+)-ATPase did not affect presynaptic [Ca(2+)]i recovery, and blocking plasmalemmal Na(+)/Ca(2+) exchange produced only a small reduction in the rate of [Ca(2+)]i recovery (∼12%) that was independent of intracellular K(+). However, [Ca(2+)]i recovery in presynaptic boutons strongly depended on the plasma membrane Ca(2+)-ATPase (PMCA) and mitochondria that accounted for ∼47 and 40%, respectively, of presynaptic Ca(2+) clearance. Measurements using a mitochondria-targeted Ca(2+) indicator, mtPericam, demonstrated that presynaptic mitochondria accumulated Ca(2+) in response to electrical stimulation. Quantitative analysis revealed that the mitochondrial Ca(2+) uptake is highly sensitive to presynaptic [Ca(2+)]i elevations, and occurs at [Ca(2+)]i levels as low as ∼200-300 nm. Using RT-PCR, we detected expression of several putative mitochondrial Ca(2+) transporters in DRG, such as MCU, Letm1 and NCLX. Collectively, this work identifies PMCA and mitochondria as the major regulators of presynaptic Ca(2+) signalling at the first sensory synapse, and underlines the high sensitivity of the mitochondrial Ca(2+) uniporter in neurons to cytosolic Ca(2+).


Asunto(s)
Señalización del Calcio/fisiología , Mitocondrias/fisiología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Animales Recién Nacidos , Calcio/fisiología , Capsaicina , Células Cultivadas , Técnicas de Cocultivo , Ganglios Espinales/citología , Dolor/fisiopatología , Ratas , Ratas Sprague-Dawley , Médula Espinal/citología , Sinapsis/fisiología
15.
J Biol Chem ; 287(45): 37594-609, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22977251

RESUMEN

The Ca(2+)/calcineurin-dependent transcription factor NFAT (nuclear factor of activated T-cells) is implicated in regulating dendritic and axonal development, synaptogenesis, and neuronal survival. Despite the increasing appreciation for the importance of NFAT-dependent transcription in the nervous system, the regulation and function of specific NFAT isoforms in neurons are poorly understood. Here, we compare the activation of NFATc3 and NFATc4 in hippocampal and dorsal root ganglion neurons following electrically evoked elevations of intracellular Ca(2+) concentration ([Ca(2+)](i)). We find that NFATc3 undergoes rapid dephosphorylation and nuclear translocation that are essentially complete within 20 min, although NFATc4 remains phosphorylated and localized to the cytosol, only exhibiting nuclear localization following prolonged (1-3 h) depolarization. Knocking down NFATc3, but not NFATc4, strongly diminished NFAT-mediated transcription induced by mild depolarization in neurons. By analyzing NFATc3/NFATc4 chimeras, we find that the region containing the serine-rich region-1 (SRR1) mildly affects initial NFAT translocation, although the region containing the serine-proline repeats is critical for determining the magnitude of NFAT activation and nuclear localization upon depolarization. Knockdown of glycogen synthase kinase 3ß (GSK3ß) significantly increased the depolarization-induced nuclear localization of NFATc4. In contrast, inhibition of p38 or mammalian target of rapamycin (mTOR) kinases had no significant effect on nuclear import of NFATc4. Thus, electrically evoked [Ca(2+)](i) elevation in neurons rapidly and strongly activates NFATc3, whereas activation of NFATc4 requires a coincident increase in [Ca(2+)](i) and suppression of GSK3ß, with differences in the serine-proline-containing region giving rise to these distinct activation properties of NFATc3 and NFATc4.


Asunto(s)
Calcio/metabolismo , Factores de Transcripción NFATC/metabolismo , Neuronas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Animales Recién Nacidos , Núcleo Celular/metabolismo , Células Cultivadas , Citosol/metabolismo , Estimulación Eléctrica , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Immunoblotting , Microscopía Confocal , Factores de Transcripción NFATC/genética , Células PC12 , Fosforilación , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Transcripción Genética
16.
Front Cell Dev Biol ; 11: 1094356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36760367

RESUMEN

Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca2+) buffering, and apoptotic signaling. In neurons, Ca2+ buffering is particularly important as it helps to shape Ca2+ signals and to regulate numerous Ca2+-dependent functions including neuronal excitability, synaptic transmission, gene expression, and neuronal toxicity. Over the past decade, identification of the mitochondrial Ca2+ uniporter (MCU) and other molecular components of mitochondrial Ca2+ transport has provided insight into the roles that mitochondrial Ca2+ regulation plays in neuronal function in health and disease. In this review, we discuss the many roles of mitochondrial Ca2+ uptake and release mechanisms in normal neuronal function and highlight new insights into the Ca2+-dependent mechanisms that drive mitochondrial dysfunction in neurologic diseases including epilepsy, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We also consider how targeting Ca2+ uptake and release mechanisms could facilitate the development of novel therapeutic strategies for neurological diseases.

17.
J Thromb Haemost ; 21(8): 2163-2174, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37061131

RESUMEN

BACKGROUND: Mitochondrial calcium uniporter b (MCUb) is a negative regulator of the mitochondrial calcium uniporter (MCU) and is known to limit mitochondrial calcium ion (Ca2+) uptake. The role of MCUb in platelet function remains unclear. OBJECTIVES: Utilizing MCUb-/- mice, we examined the role of MCUb in regulating platelet function and thrombosis. METHODS: Platelet activation was evaluated in agonist-induced standardized in vitro assays. Susceptibility to arterial thrombosis was evaluated in FeCl3 injury-induced carotid artery and laser injury-induced mesenteric artery thrombosis models. The glycolytic proton efflux rate and oxygen consumption rate were measured to evaluate aerobic glycolysis. RESULTS: Upon stimulation, MCUb-/- platelets exhibited reduced cytoplasmic Ca2+ responses concomitant with increased mitochondrial Ca2+ uptake. MCUb-/- platelets displayed reduced agonist-induced platelet aggregation and spreading on fibrinogen and decreased α and dense-granule secretion and clot retraction. MCUb-/- mice were less susceptible to arterial thrombosis in FeCl3 injury-induced carotid and laser injury-induced mesenteric thrombosis models with unaltered tail bleeding time. In adoptive transfer experiments, thrombocytopenic hIL-4Rα/GPIbα-transgenic mice transfused with MCUb-/- platelets were less susceptible to FeCl3 injury-induced carotid thrombosis compared with hIL-4Rα/GPIbα-Tg mice transfused with wild type platelets, suggesting a platelet-specific role of MCUb in thrombosis. MCUb-/- stimulated platelets exhibited reduced glucose uptake, decreased glycolytic rate, and lowered pyruvate dehydrogenase phosphorylation, suggesting that mitochondrial Ca2+ mediates bioenergetic changes in platelets. CONCLUSION: Our findings suggest that mitochondrial Ca2+ signaling and glucose oxidation are functionally linked in activated platelets and reveal a novel role of MCUb in platelet activation and arterial thrombosis.


Asunto(s)
Hemostasis , Trombosis , Ratones , Animales , Agregación Plaquetaria , Plaquetas , Activación Plaquetaria , Ratones Transgénicos , Ratones Noqueados , Calcio
18.
Mol Metab ; 67: 101654, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36513220

RESUMEN

OBJECTIVE: The essential role of mitochondria in regulation of metabolic function and other physiological processes has garnered enormous interest in understanding the mechanisms controlling the function of this organelle. We assessed the role of the BBSome, a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins, in the control of mitochondria dynamic and function. METHODS: We used a multidisciplinary approach that include CRISPR/Cas9 technology-mediated generation of a stable Bbs1 gene knockout hypothalamic N39 neuronal cell line. We also analyzed the phenotype of BBSome deficient mice in presence or absence of the gene encoding A-kinase anchoring protein 1 (AKAP1). RESULTS: Our data show that the BBSome play an important role in the regulation of mitochondria dynamics and function. Disruption of the BBSome cause mitochondria hyperfusion in cell lines, fibroblasts derived from patients as well as in hypothalamic neurons and brown adipocytes of mice. The morphological changes in mitochondria translate into functional abnormalities as indicated by the reduced oxygen consumption rate and altered mitochondrial distribution and calcium handling. Mechanistically, we demonstrate that the BBSome modulates the activity of dynamin-like protein 1 (DRP1), a key regulator of mitochondrial fission, by regulating its phosphorylation and translocation to the mitochondria. Notably, rescuing the decrease in DRP1 activity through deletion of one copy of the gene encoding AKAP1 was effective to normalize the defects in mitochondrial morphology and activity induced by BBSome deficiency. Importantly, this was associated with improvement in several of the phenotypes caused by loss of the BBSome such as the neuroanatomical abnormalities, metabolic alterations and obesity highlighting the importance of mitochondria defects in the pathophysiology of BBS. CONCLUSIONS: These findings demonstrate a critical role of the BBSome in the modulation of mitochondria function and point to mitochondrial defects as a key disease mechanism in BBS.


Asunto(s)
Síndrome de Bardet-Biedl , Ratones , Animales , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Obesidad/metabolismo , Proteínas , Línea Celular , Mitocondrias/metabolismo
19.
PLoS One ; 17(3): e0263197, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35353835

RESUMEN

Voltage-gated Ca2+ channels are critical for the development and mature function of the nervous system. Variants in the CACNA2D4 gene encoding the α2δ-4 auxiliary subunit of these channels are associated with neuropsychiatric and neurodevelopmental disorders. α2δ-4 is prominently expressed in the retina and is crucial for vision, but extra-retinal functions of α2δ-4 have not been investigated. Here, we sought to fill this gap by analyzing the behavioral phenotypes of α2δ-4 knockout (KO) mice. α2δ-4 KO mice (both males and females) exhibited significant impairments in prepulse inhibition that were unlikely to result from the modestly elevated auditory brainstem response thresholds. Whereas α2δ-4 KO mice of both sexes were hyperactive in various assays, only females showed impaired motor coordination in the rotarod assay. α2δ-4 KO mice exhibited anxiolytic and anti-depressive behaviors in the elevated plus maze and tail suspension tests, respectively. Our results reveal an unexpected role for α2δ-4 in sensorimotor gating and motor function and identify α2δ-4 KO mice as a novel model for studying the pathophysiology associated with CACNA2D4 variants.


Asunto(s)
Canales de Calcio Tipo L , Calcio , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Inhibición Prepulso
20.
J Neurosci ; 30(15): 5125-35, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20392935

RESUMEN

Ca(v)1 (L-type) channels and calmodulin-dependent protein kinase II (CaMKII) are key regulators of Ca(2+) signaling in neurons. CaMKII directly potentiates the activity of Ca(v)1.2 and Ca(v)1.3 channels, but the underlying molecular mechanisms are incompletely understood. Here, we report that the CaMKII-associated protein densin is required for Ca(2+)-dependent facilitation of Ca(v)1.3 channels. While neither CaMKII nor densin independently affects Ca(v)1.3 properties in transfected HEK293T cells, the two together augment Ca(v)1.3 Ca(2+) currents during repetitive, but not sustained, depolarizing stimuli. Facilitation requires Ca(2+), CaMKII activation, and its association with densin, as well as densin binding to the Ca(v)1.3 alpha(1) subunit C-terminal domain. Ca(v)1.3 channels and densin are targeted to dendritic spines in neurons and form a complex with CaMKII in the brain. Our results demonstrate a novel mechanism for Ca(2+)-dependent facilitation that may intensify postsynaptic Ca(2+) signals during high-frequency stimulation.


Asunto(s)
Canales de Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Sialoglicoproteínas/metabolismo , Animales , Canales de Calcio/genética , Línea Celular , Células Cultivadas , Espinas Dendríticas/enzimología , Espinas Dendríticas/metabolismo , Hipocampo/enzimología , Hipocampo/metabolismo , Humanos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos BALB C , Neuronas/enzimología , Neuronas/metabolismo , Ratas , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA