Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Genet ; 143(5): 721-734, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38691166

RESUMEN

TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype-phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.


Asunto(s)
Estudios de Asociación Genética , Pérdida Auditiva , Proteínas de la Membrana , Serina Endopeptidasas , Humanos , Femenino , Masculino , Serina Endopeptidasas/genética , Adulto , Proteínas de la Membrana/genética , Pérdida Auditiva/genética , Niño , Persona de Mediana Edad , Adolescente , Preescolar , Genotipo , Estudios de Cohortes , Fenotipo , Mutación Missense , Estudios Transversales , Adulto Joven , Estudios Retrospectivos , Anciano , Proteínas de Neoplasias
2.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474154

RESUMEN

A comprehensive gene expression investigation requires high-quality RNA extraction, in sufficient amounts for real-time quantitative polymerase chain reaction and next-generation sequencing. In this work, we compared different RNA extraction methods and evaluated different reference genes for gene expression studies in the fetal human inner ear. We compared the RNA extracted from formalin-fixed paraffin-embedded tissue with fresh tissue stored at -80 °C in RNAlater solution and validated the expression stability of 12 reference genes (from gestational week 11 to 19). The RNA from fresh tissue in RNAlater resulted in higher amounts and a better quality of RNA than that from the paraffin-embedded tissue. The reference gene evaluation exhibited four stably expressed reference genes (B2M, HPRT1, GAPDH and GUSB). The selected reference genes were then used to examine the effect on the expression outcome of target genes (OTOF and TECTA), which are known to be regulated during inner ear development. The selected reference genes displayed no differences in the expression profile of OTOF and TECTA, which was confirmed by immunostaining. The results underline the importance of the choice of the RNA extraction method and reference genes used in gene expression studies.


Asunto(s)
Perfilación de la Expresión Génica , ARN , Humanos , Perfilación de la Expresión Génica/métodos , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Expresión Génica , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Hum Genet ; 141(3-4): 665-681, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34599366

RESUMEN

Etiological studies have shown genetic disorders to be a major cause of sensorineural hearing loss, but there are a limited number of comprehensive etiological reports based on genetic analysis. In the present study, the same platform using a diagnostic DNA panel carrying 63 deafness genes and the same filtering algorithm were applied to 10,047 samples obtained from social health insurance-based genetic testing of hearing loss. The most remarkable result obtained in this comprehensive study was that the data first clarified the genetic epidemiology from congenital/early-onset deafness to late-onset hearing loss. The overall diagnostic rate was 38.8%, with the rate differing for each age group; 48.6% for the congenital/early-onset group (~5y.o.), 33.5% for the juvenile/young adult-onset group, and 18.0% for the 40+ y.o. group. Interestingly, each group showed a different kind of causative gene. With regard to the mutational spectra, there are certain recurrent variants that may be due to founder effects or hot spots. A series of haplotype studies have shown many recurrent variants are due to founder effects, which is compatible with human migration. It should be noted that, regardless of differences in the mutational spectrum, the clinical characteristics caused by particular genes can be considered universal. This comprehensive review clarified the detailed clinical characteristics (onset age, severity, progressiveness, etc.) of hearing loss caused by each gene, and will provide useful information for future clinical application, including genetic counseling and selection of appropriate interventions.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Adulto , Preescolar , Sordera/genética , Pruebas Genéticas , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/genética , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/genética , Humanos , Seguro de Salud , Japón/epidemiología , Mutación , Adulto Joven
4.
Hum Genet ; 141(3-4): 929-937, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34523024

RESUMEN

TMC1 is a causative gene for both autosomal dominant non-syndromic hearing loss (DFNA36) and autosomal recessive non-syndromic hearing loss (DFNB7/11). To date, 125 pathogenic variants in TMC1 have been reported. Most of the TMC1 variants are responsible for autosomal recessive hearing loss, with only 8 variants reported as causative for DFNA36. Here, we reported the prevalence of TMC1-associated hearing loss in a large non-syndromic hearing loss cohort of about 12,000 subjects. As a result, we identified 26 probands with TMC1-associated hearing loss, with the estimated prevalence of TMC1-associated hearing loss in the Japanese hearing loss cohort being 0.17% among all patients. Among the 26 probands with TMC1-associated hearing loss, 15 cases were identified from autosomal dominant hearing loss families. Based on the audiometric data from the probands, family members and previously reported cases, we evaluated hearing deterioration for DFNA36 patients. In addition, we performed haplotype analysis for 11 unrelated autosomal dominant hearing loss families carrying the same variant TMC1: NM_138691:c.1627G > A:p.Asp543Asn. The results clearly indicated that the same haplotype was present despite the families being unrelated, supporting the contention that this variant occurred by founder mutation.


Asunto(s)
Pérdida Auditiva Sensorineural , Pérdida Auditiva , Sordera , Pérdida Auditiva/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Proteínas de la Membrana/genética , Mutación , Linaje , Prevalencia
5.
Hum Genet ; 141(3-4): 903-914, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35020051

RESUMEN

Variants in the CDH23 gene are known to be responsible for both syndromic hearing loss (Usher syndrome type ID: USH1D) and non-syndromic hearing loss (DFNB12). Our series of studies demonstrated that CDH23 variants cause a broad range of phenotypes of non-syndromic hearing loss (DFNB12); from congenital profound hearing loss to late-onset high-frequency-involved progressive hearing loss. In this study, based on the genetic and clinical data from more than 10,000 patients, the mutational spectrum, clinical characteristics and genotype/phenotype correlations were evaluated. The present results reconfirmed that the variants in CDH23 are an important cause of non-syndromic sensorineural hearing loss. In addition, we showed that the mutational spectrum in the Japanese population, which is probably representative of the East Asian population in general, as well as frequent CDH23 variants that might be due to some founder effects. The present study demonstrated CDH23 variants cause a broad range of phenotypes, from non-syndromic to syndromic hearing loss as well as from congenital to age-related hearing loss. Genotype (variant combinations) and phenotype (association with retinal pigmentosa, onset age) are shown to be well correlated and are thought to be related to the residual function defined by the CDH23 variants.


Asunto(s)
Pérdida Auditiva Sensorineural , Síndromes de Usher , Proteínas Relacionadas con las Cadherinas/genética , Cadherinas/genética , Sordera , Pérdida Auditiva Sensorineural/genética , Humanos , Mutación , Síndromes de Usher/genética
6.
Hum Genet ; 141(3-4): 363-382, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34232383

RESUMEN

Stereocilia protrude up to 100 µm from the apical surface of vertebrate inner ear hair cells and are packed with cross-linked filamentous actin (F-actin). They function as mechanical switches to convert sound vibration into electrochemical neuronal signals transmitted to the brain. Several genes encode molecular components of stereocilia including actin monomers, actin regulatory and bundling proteins, motor proteins and the proteins of the mechanotransduction complex. A stereocilium F-actin core is a dynamic system, which is continuously being remodeled while maintaining an outwardly stable architecture under the regulation of F-actin barbed-end cappers, severing proteins and crosslinkers. The F-actin cores of stereocilia also provide a pathway for motor proteins to transport cargos including components of tip-link densities, scaffolding proteins and actin regulatory proteins. Deficiencies and mutations of stereocilia components that disturb this "dynamic equilibrium" in stereocilia can induce morphological changes and disrupt mechanotransduction causing sensorineural hearing loss, best studied in mouse and zebrafish models. Currently, at least 23 genes, associated with human syndromic and nonsyndromic hearing loss, encode proteins involved in the development and maintenance of stereocilia F-actin cores. However, it is challenging to predict how variants associated with sensorineural hearing loss segregating in families affect protein function. Here, we review the functions of several molecular components of stereocilia F-actin cores and provide new data from our experimental approach to directly evaluate the pathogenicity and functional impact of reported and novel variants of DIAPH1 in autosomal-dominant DFNA1 hearing loss using single-molecule fluorescence microscopy.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Actinas/genética , Animales , Sordera/genética , Sordera/metabolismo , Forminas , Cabello/metabolismo , Pérdida Auditiva Sensorineural/metabolismo , Humanos , Mecanotransducción Celular/genética , Ratones , Proteínas de Microfilamentos/genética , Estereocilios/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
7.
Hum Genet ; 141(3-4): 865-875, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34536124

RESUMEN

Mutations in the OTOF gene are a common cause of hereditary hearing loss and the main cause of auditory neuropathy spectrum disorder (ANSD). Although it is reported that most of the patients with OTOF mutations have stable, congenital or prelingual onset severe-to-profound hearing loss, some patients show atypical clinical phenotypes, and the genotype-phenotype correlation in patients with OTOF mutations is not yet fully understood. In this study, we aimed to reveal detailed clinical characteristics of OTOF-related hearing loss patients and the genotype-phenotype correlation. Detailed clinical information was available for 64 patients in our database who were diagnosed with OTOF-related hearing loss. As reported previously, most of the patients (90.6%) showed a "typical" phenotype; prelingual and severe-to-profound hearing loss. Forty-seven patients (73.4%) underwent cochlear implantation surgery and showed successful outcomes; approximately 85-90% of the patients showed a hearing level of 20-39 dB with cochlear implant and a Categories of Auditory Performance (CAP) scale level 6 or better. Although truncating mutations and p.Arg1939Gln were clearly related to severe phenotype, almost half of the patients with one or more non-truncating mutations showed mild-to-moderate hearing loss. Notably, patients with p.His513Arg, p.Ile1573Thr and p.Glu1910Lys showed "true" auditory neuropathy-like clinical characteristics. In this study, we have clarified genotype-phenotype correlation and efficacy of cochlear implantation for OTOF-related hearing loss patients in the biggest cohort studied to date. We believe that the clinical characteristics and genotype-phenotype correlation found in this study will support preoperative counseling and appropriate intervention for OTOF-related hearing loss patients.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Estudios de Asociación Genética , Pérdida Auditiva/genética , Pérdida Auditiva Central , Pérdida Auditiva Sensorineural/genética , Humanos , Japón , Proteínas de la Membrana/genética , Mutación
8.
J Hum Genet ; 67(4): 223-230, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34824372

RESUMEN

Genetic testing for congenital or early-onset hearing loss patients has become a common diagnostic option in many countries. On the other hand, there are few late-onset hearing loss patients receiving genetic testing, as late-onset hearing loss is believed to be a complex disorder and the diagnostic rate for genetic testing in late-onset patients is lower than that for the congenital cases. To date, the etiology of late-onset hearing loss is largely unknown. In the present study, we recruited 48 unrelated Japanese patients with late-onset bilateral sensorineural hearing loss, and performed genetic analysis of 63 known deafness gene using massively parallel DNA sequencing. As a result, we identified 25 possibly causative variants in 29 patients (60.4%). The present results clearly indicated that various genes are involved in late-onset hearing loss and a significant portion of cases of late-onset hearing loss is due to genetic causes. In addition, we identified two interesting cases for whom we could expand the phenotypic description. One case with a novel MYO7A variant showed a milder phenotype with progressive hearing loss and late-onset retinitis pigmentosa. The other case presented with Stickler syndrome with a mild phenotype caused by a homozygous frameshift COL9A3 variant. In conclusion, comprehensive genetic testing for late-onset hearing loss patients is necessary to obtain accurate diagnosis and to provide more appropriate treatment for these patients.


Asunto(s)
Pérdida Auditiva Sensorineural , Pérdida Auditiva , Antecedentes Genéticos , Pérdida Auditiva/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Linaje , Fenotipo
9.
BMC Neurol ; 21(1): 243, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34171997

RESUMEN

BACKGROUND: Hereditary motor and sensory neuropathy, also referred to as Charcot-Marie-Tooth disease (CMT), is most often caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. This duplication causes CMT type 1A (CMT1A). CMT1A rarely occurs in combination with other hereditary neuromuscular disorders. However, such rare genetic coincidences produce a severe phenotype and have been reported in terms of "double trouble" overlapping syndrome. Waardenburg syndrome (WS) is the most common form of a hereditary syndromic deafness. It is primarily characterized by pigmentation anomalies and classified into four major phenotypes. A mutation in the SRY sex determining region Y-box 10 (SOX10) gene causes WS type 2 or 4 and peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, WS, and Hirschsprung disease. We describe a 11-year-old boy with extreme hypertrophic neuropathy because of a combination of CMT1A and WS type 2. This is the first published case on the co-occurrence of CMT1A and WS type 2. CASE PRESENTATION: The 11-year-old boy presented with motor developmental delay and a deterioration in unstable walking at 6 years of age. In addition, he had congenital hearing loss and heterochromia iridis. The neurological examination revealed weakness in the distal limbs with pes cavus. He was diagnosed with CMT1A by the fluorescence in situ hybridization method. His paternal pedigree had a history of CMT1A. However, no family member had congenital hearing loss. His clinical manifestation was apparently severe than those of his relatives with CMT1A. In addition, a whole-body magnetic resonance neurography revealed an extreme enlargement of his systemic cranial and spinal nerves. Subsequently, a genetic analysis revealed a heterozygous frameshift mutation c.876delT (p.F292Lfs*19) in the SOX10 gene. He was eventually diagnosed with WS type 2. CONCLUSIONS: We described a patient with a genetically confirmed overlapping diagnoses of CMT1A and WS type 2. The double trouble with the genes created a significant impact on the peripheral nerves system. Severe phenotype in the proband can be attributed to the cumulative effect of mutations in both PMP22 and SOX10 genes, responsible for demyelinating neuropathy.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas de la Mielina/genética , Factores de Transcripción SOXE/genética , Síndrome de Waardenburg , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Niño , Enfermedades Desmielinizantes , Duplicación de Gen/genética , Humanos , Masculino , Mutación/genética , Síndrome de Waardenburg/diagnóstico , Síndrome de Waardenburg/genética
10.
Eur Arch Otorhinolaryngol ; 278(11): 4225-4233, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33788034

RESUMEN

PURPOSE: Magnetic resonance imaging (MRI) is often used to visualize and diagnose soft tissues. Hearing implant (HI) recipients are likely to require at least one MRI scan during their lifetime. However, the MRI scanner can interact with the implant magnet, resulting in complications for the HI recipient. This survey, which was conducted in two phases, aimed to evaluate the safety and performance of MRI scans for individuals with a HI manufactured by MED-EL (MED-EL GmbH, Innsbruck, Austria). METHODS: A survey was developed and distributed in two phases to HEARRING clinics to obtain information about the use of MRI for recipients of MED-EL devices. Phase 1 focused on how often MRI is used in diagnostic imaging of the head region of the cochlear implant (CI) recipients. Phase 2 collected safety information about MRI scans performed on HI recipients. RESULTS: 106 of the 126 MRI scans reported in this survey were performed at a field strength of 1.5 T, on HI recipients who wore the SYNCHRONY CI or SYNCHRONY ABI. The head and spine were the most frequently imaged regions. 123 of the 126 scans were performed without any complications; two HI recipients experienced discomfort/pain. One recipient required reimplantation after an MRI was performed using a scanner that had not been approved for that implant. There was only one case that required surgical removal of the implant to reduce the imaging artefact. CONCLUSION: Individuals with either a SYNCHRONY CI or SYNCHRONY ABI from MED-EL can safely undergo a 1.5 T MRI when it is performed according to the manufacturer's safety policies and procedures.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Audición , Humanos , Imagen por Resonancia Magnética , Imanes
11.
ORL J Otorhinolaryngol Relat Spec ; 83(3): 196-202, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33588412

RESUMEN

We describe a dominant Japanese patient with progressive conductive hearing loss who was diagnosed with NOG-related symphalangism spectrum disorder (NOG-SSD), a spectrum of congenital stapes fixation syndromes caused by NOG mutations. Based on the clinical features, including proximal symphalangism, conductive hearing loss, hyper-opia, and short, broad middle, and distal phalanges of the thumbs, his family was diagnosed with stapes ankylosis with broad thumbs and toes syndrome (SABTT). Genetic analysis revealed a heterozygous substitution in the NOG gene, c.645C>A, p.C215* in affected family individuals. He had normal hearing on auditory brainstem response (ABR) testing at ages 9 months and 1 and 2 years. He was followed up to evaluate the hearing level because of his family history of hearing loss caused by SABTT. Follow-up pure tone average testing revealed the development of progressive conductive hearing loss. Stapes surgery was performed, and his post-operative hearing threshold improved to normal in both ears. According to hearing test results, the stapes ankylosis in our SABTT patient seemed to be incomplete at birth and progressive in early childhood. The ABR results in our patient indicated the possibility that newborn hearing screening may not detect conductive hearing loss in patients with NOG-SSD. Hence, children with a family history and/or known congenital joint abnormality should undergo periodic hearing tests due to possible progressive hearing loss. Because of high success rates of stapes surgeries in cases of SABTT, early surgical interventions would help minimise the negative effect of hearing loss during school age. Identification of the nature of conductive hearing loss due to progressive stapes ankylosis allows for better genetic counselling and proper intervention in NOG-SSD patients.


Asunto(s)
Pérdida Auditiva Conductiva , Sinostosis , Proteínas Portadoras/genética , Preescolar , Pérdida Auditiva Conductiva/congénito , Pérdida Auditiva Conductiva/etiología , Pérdida Auditiva Conductiva/genética , Humanos , Lactante , Masculino , Fenotipo , Estribo
12.
Hum Genet ; 139(10): 1315-1323, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32382995

RESUMEN

We present detailed comparative analyses to assess population-level differences in patterns of genetic deafness between European/American and Japanese cohorts with non-syndromic hearing loss. One thousand eighty-three audiometric test results (921 European/American and 162 Japanese) from members of 168 families (48 European/American and 120 Japanese) with non-syndromic hearing loss secondary to pathogenic variants in one of three genes (KCNQ4, TECTA, WFS1) were studied. Audioprofile characteristics, specific mutation types, and protein domains were considered in the comparative analyses. Our findings support differences in audioprofiles driven by both mutation type (non-truncating vs. truncating) and ethnic background. The former finding confirms data that ascribe a phenotypic consequence to different mutation types in KCNQ4; the latter finding suggests that there are ethnic-specific effects (genetic and/or environmental) that impact gene-specific audioprofiles for TECTA and WFS1. Identifying the drivers of ethnic differences will refine our understanding of phenotype-genotype relationships and the biology of hearing and deafness.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Genotipo , Pérdida Auditiva Sensorineural/genética , Canales de Potasio KCNQ/genética , Proteínas de la Membrana/genética , Mutación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Pueblo Asiatico , Audiometría , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Proteínas Ligadas a GPI/genética , Expresión Génica , Estudios de Asociación Genética , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/etnología , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Lactante , Recién Nacido , Japón , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Estados Unidos , Población Blanca
13.
Int J Mol Sci ; 20(18)2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527509

RESUMEN

Tight junctions are cellular junctions that play a major role in the epithelial barrier function. In the inner ear, claudins, occludin, tricellulin, and angulins form the bicellular or tricellular binding of membrane proteins. In these, one type of claudin gene, CLDN14, was reported to be responsible for human hereditary hearing loss, DFNB29. Until now, nine pathogenic variants have been reported, and most phenotypic features remain unclear. In the present study, genetic screening for 68 previously reported deafness causative genes was carried out to identify CLDN14 variants in a large series of Japanese hearing loss patients, and to clarify the prevalence and clinical characteristics of DFNB29 in the Japanese population. One patient had a homozygous novel variant (c.241C>T: p.Arg81Cys) (0.04%: 1/2549). The patient showed progressive bilateral hearing loss, with post-lingual onset. Pure-tone audiograms indicated a high-frequency hearing loss type, and the deterioration gradually spread to other frequencies. The patient showed normal vestibular function. Cochlear implantation improved the patient's sound field threshold levels, but not speech discrimination scores. This report indicated that claudin-14 is essential for maintaining the inner ear environment and suggested the possible phenotypic expansion of DFNB29. This is the first report of a patient with a tight junction variant receiving a cochlear implantation.


Asunto(s)
Claudinas/genética , Sordera/diagnóstico , Sordera/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Fenotipo , Adolescente , Adulto , Anciano , Alelos , Sustitución de Aminoácidos , Niño , Preescolar , Claudinas/metabolismo , Sordera/metabolismo , Sordera/terapia , Femenino , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Lactante , Recién Nacido , Japón , Masculino , Persona de Mediana Edad , Linaje , Uniones Estrechas/genética , Uniones Estrechas/metabolismo , Adulto Joven
14.
Hum Mutat ; 38(3): 252-259, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28008688

RESUMEN

Recent advances in next-generation sequencing (NGS) have given rise to new challenges due to the difficulties in variant pathogenicity interpretation and large dataset management, including many kinds of public population databases as well as public or commercial disease-specific databases. Here, we report a new database development tool, named the "Clinical NGS Database," for improving clinical NGS workflow through the unified management of variant information and clinical information. This database software offers a two-feature approach to variant pathogenicity classification. The first of these approaches is a phenotype similarity-based approach. This database allows the easy comparison of the detailed phenotype of each patient with the average phenotype of the same gene mutation at the variant or gene level. It is also possible to browse patients with the same gene mutation quickly. The other approach is a statistical approach to variant pathogenicity classification based on the use of the odds ratio for comparisons between the case and the control for each inheritance mode (families with apparently autosomal dominant inheritance vs. control, and families with apparently autosomal recessive inheritance vs. control). A number of case studies are also presented to illustrate the utility of this database.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Programas Informáticos , Interfaz Usuario-Computador , Flujo de Trabajo
16.
Am J Hum Genet ; 95(4): 445-53, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25262649

RESUMEN

Ethnic-specific differences in minor allele frequency impact variant categorization for genetic screening of nonsyndromic hearing loss (NSHL) and other genetic disorders. We sought to evaluate all previously reported pathogenic NSHL variants in the context of a large number of controls from ethnically distinct populations sequenced with orthogonal massively parallel sequencing methods. We used HGMD, ClinVar, and dbSNP to generate a comprehensive list of reported pathogenic NSHL variants and re-evaluated these variants in the context of 8,595 individuals from 12 populations and 6 ethnically distinct major human evolutionary phylogenetic groups from three sources (Exome Variant Server, 1000 Genomes project, and a control set of individuals created for this study, the OtoDB). Of the 2,197 reported pathogenic deafness variants, 325 (14.8%) were present in at least one of the 8,595 controls, indicating a minor allele frequency (MAF) > 0.00006. MAFs ranged as high as 0.72, a level incompatible with pathogenicity for a fully penetrant disease like NSHL. Based on these data, we established MAF thresholds of 0.005 for autosomal-recessive variants (excluding specific variants in GJB2) and 0.0005 for autosomal-dominant variants. Using these thresholds, we recategorized 93 (4.2%) of reported pathogenic variants as benign. Our data show that evaluation of reported pathogenic deafness variants using variant MAFs from multiple distinct ethnicities and sequenced by orthogonal methods provides a powerful filter for determining pathogenicity. The proposed MAF thresholds will facilitate clinical interpretation of variants identified in genetic testing for NSHL. All data are publicly available to facilitate interpretation of genetic variants causing deafness.


Asunto(s)
Etnicidad/genética , Evolución Molecular , Exoma/genética , Variación Genética/genética , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Estudios de Casos y Controles , Conexina 26 , Conexinas , Frecuencia de los Genes , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Humanos , Filogenia
17.
J Hum Genet ; 61(5): 419-22, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26791358

RESUMEN

Usher syndrome type 1 (USH1) is the most severe of the three USH subtypes due to its profound hearing loss, absent vestibular response and retinitis pigmentosa appearing at a prepubescent age. Six causative genes have been identified for USH1, making early diagnosis and therapy possible through DNA testing. Targeted exon sequencing of selected genes using massively parallel DNA sequencing (MPS) technology enables clinicians to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using MPS along with direct sequence analysis, we screened 227 unrelated non-syndromic deaf children and detected recessive mutations in USH1 causative genes in five patients (2.2%): three patients harbored MYO7A mutations and one each carried CDH23 or PCDH15 mutations. As indicated by an earlier genotype-phenotype correlation study of the CDH23 and PCDH15 genes, we considered the latter two patients to have USH1. Based on clinical findings, it was also highly likely that one patient with MYO7A mutations possessed USH1 due to a late onset age of walking. This first report describing the frequency (1.3-2.2%) of USH1 among non-syndromic deaf children highlights the importance of comprehensive genetic testing for early disease diagnosis.


Asunto(s)
Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética , Alelos , Sustitución de Aminoácidos , Niño , Preescolar , Femenino , Pruebas Genéticas , Genotipo , Humanos , Lactante , Japón , Masculino , Mutación , Linaje , Fenotipo , Sistema de Registros , Síndromes de Usher/epidemiología
18.
J Hum Genet ; 61(3): 253-61, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26763877

RESUMEN

The diagnosis of the genetic etiology of deafness contributes to the clinical management of patients. We performed the following four genetic tests in three stages for 52 consecutive deafness subjects in one facility. We used the Invader assay for 46 mutations in 13 genes and Sanger sequencing for the GJB2 gene or SLC26A4 gene in the first-stage test, the TaqMan genotyping assay in the second-stage test and targeted exon sequencing using massively parallel DNA sequencing in the third-stage test. Overall, we identified the genetic cause in 40% (21/52) of patients. The diagnostic rates of autosomal dominant, autosomal recessive and sporadic cases were 50%, 60% and 34%, respectively. When the sporadic cases with congenital and severe hearing loss were selected, the diagnostic rate rose to 48%. The combination approach using these genetic tests appears to be useful as a diagnostic tool for deafness patients. We recommended that genetic testing for the screening of common mutations in deafness genes using the Invader assay or TaqMan genotyping assay be performed as the initial evaluation. For the remaining undiagnosed cases, targeted exon sequencing using massively parallel DNA sequencing is clinically and economically beneficial.


Asunto(s)
ADN/genética , Sordera/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Japón
19.
Audiol Neurootol ; 21(6): 391-398, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28319951

RESUMEN

BACKGROUND: While hearing aids for a contralateral routing of signals (CROS-HA) and bone conduction devices have been the traditional treatment for single-sided deafness (SSD) and asymmetric hearing loss (AHL), in recent years, cochlear implants (CIs) have increasingly become a viable treatment choice, particularly in countries where regulatory approval and reimbursement schemes are in place. Part of the reason for this shift is that the CI is the only device capable of restoring bilateral input to the auditory system and hence of possibly reinstating binaural hearing. Although several studies have independently shown that the CI is a safe and effective treatment for SSD and AHL, clinical outcome measures in those studies and across CI centers vary greatly. Only with a consistent use of defined and agreed-upon outcome measures across centers can high-level evidence be generated to assess the safety and efficacy of CIs and alternative treatments in recipients with SSD and AHL. METHODS: This paper presents a comparative study design and minimum outcome measures for the assessment of current treatment options in patients with SSD/AHL. The protocol was developed, discussed, and eventually agreed upon by expert panels that convened at the 2015 APSCI conference in Beijing, China, and at the CI 2016 conference in Toronto, Canada. RESULTS: A longitudinal study design comparing CROS-HA, BCD, and CI treatments is proposed. The recommended outcome measures include (1) speech in noise testing, using the same set of 3 spatial configurations to compare binaural benefits such as summation, squelch, and head shadow across devices; (2) localization testing, using stimuli that rove in both level and spectral content; (3) questionnaires to collect quality of life measures and the frequency of device use; and (4) questionnaires for assessing the impact of tinnitus before and after treatment, if applicable. CONCLUSION: A protocol for the assessment of treatment options and outcomes in recipients with SSD and AHL is presented. The proposed set of minimum outcome measures aims at harmonizing assessment methods across centers and thus at generating a growing body of high-level evidence for those treatment options.


Asunto(s)
Implantación Coclear/métodos , Consenso , Sordera/rehabilitación , Audífonos , Pérdida Auditiva Unilateral/rehabilitación , Percepción del Habla , Implantes Cocleares , Sordera/fisiopatología , Pérdida Auditiva Unilateral/fisiopatología , Humanos , Estudios Longitudinales , Ruido , Estudios Prospectivos , Calidad de Vida , Localización de Sonidos , Encuestas y Cuestionarios , Acúfeno , Resultado del Tratamiento
20.
J Hum Genet ; 60(10): 613-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26178431

RESUMEN

Hearing impairment is one of the most common sensory disorders that affect ~1 in 1000 children, and half of them are considered to be hereditary. Information about the carrier frequencies of mutations that underlie autosomal recessive disorders is indispensable for accurate genetic counseling to predict the probability of patients' children's disease. However, there have been few reports specific to the Japanese population. GJB2 mutations are reported to be the most frequent cause of hereditary hearing loss, and the mutation spectrum and frequency of GJB2 mutations were reported to vary among different ethnic groups. In this study, we investigated the carrier frequency of GJB2 mutations and the mutation spectrum in 509 individuals randomly selected from the general Japanese population. We show that the carrier frequencies of the two most common pathogenic mutations are 1.57% (8/509) for c.235delC and 1.77% (9/509) for p.Val37Ile. In addition to these mutations, we found two pathogenic variants (p.[Gly45Glu;Tyr136*] and p.Arg143Trp), and the total carrier frequency was estimated to be around 3.73% (19/509). We also detected six unclassified variants, including two novel variants (p.Cys60Tyr and p.Phe106Leu), with the former predicted to be pathogenic. These findings will provide indispensable information for genetic counseling in the Japanese population.


Asunto(s)
Pueblo Asiatico/genética , Conexinas/genética , Frecuencia de los Genes , Pérdida Auditiva/genética , Adulto , Anciano , Anciano de 80 o más Años , Conexina 26 , Femenino , Pérdida Auditiva/epidemiología , Humanos , Japón/epidemiología , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA