Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38564376

RESUMEN

RATIONALE: The chronic lung disease bronchopulmonary dysplasia (BPD) is the most severe complication of extreme prematurity. BPD results in impaired lung alveolar and vascular development and long-term respiratory morbidity, for which only supportive therapies exist. Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) improve lung structure and function in experimental BPD. Results of clinical trials with MSCs for many disorders do not yet match the promising preclinical studies. A lack of specific criteria to define functionally distinct MSCs persists. OBJECTIVES: To determine and correlate single-cell UC-MSC transcriptomic profile with therapeutic potential. METHODS: UC-MSCs from five term donors and human neonatal dermal fibroblasts (HNDFs, control cells of mesenchymal origin) transcriptomes were investigated by single-cell RNA sequencing analysis (scRNA-seq). The lung-protective effect of UC-MSCs with a distinct transcriptome and control HNDFs was tested in vivo in hyperoxia-induced neonatal lung injury in rats. MEASUREMENTS AND MAIN RESULTS: UC-MSCs showed limited transcriptomic heterogeneity, but were different from HNDFs. Gene ontology enrichment analysis revealed distinct - progenitor-like and fibroblast-like - UC-MSC subpopulations. Only the treatment with progenitor-like UC-MSCs improved lung function and structure and attenuated pulmonary hypertension in hyperoxia-exposed rat pups. Moreover, scRNA-seq identified major histocompatibility complex class I as a molecular marker of non-therapeutic cells and associated with decreased lung retention. CONCLUSIONS: UC-MSCs with a progenitor-like transcriptome, but not with a fibroblast-like transcriptome, provide lung protection in experimental BPD. High expression of major histocompatibility complex class I is associated with reduced therapeutic benefit. scRNA-seq may be useful to identify subsets of MSCs with superior repair capacity for clinical application.

2.
Mol Ther ; 31(12): 3457-3477, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37805711

RESUMEN

Surfactant protein B (SP-B) deficiency is a rare genetic disease that causes fatal respiratory failure within the first year of life. Currently, the only corrective treatment is lung transplantation. Here, we co-transduced the murine lung with adeno-associated virus 6.2FF (AAV6.2FF) vectors encoding a SaCas9-guide RNA nuclease or donor template to mediate insertion of promoterless reporter genes or the (murine) Sftpb gene in frame with the endogenous surfactant protein C (SP-C) gene, without disrupting SP-C expression. Intranasal administration of 3 × 1011 vg donor template and 1 × 1011 vg nuclease consistently edited approximately 6% of lung epithelial cells. Frequency of gene insertion increased in a dose-dependent manner, reaching 20%-25% editing efficiency with the highest donor template and nuclease doses tested. We next evaluated whether this promoterless gene editing platform could extend survival in the conditional SP-B knockout mouse model. Administration of 1 × 1012 vg SP-B-donor template and 5 × 1011 vg nuclease significantly extended median survival (p = 0.0034) from 5 days in the untreated off doxycycline group to 16 days in the donor AAV and nuclease group, with one gene-edited mouse living 243 days off doxycycline. This AAV6.2FF-based gene editing platform has the potential to correct SP-B deficiency, as well as other disorders of alveolar type II cells.


Asunto(s)
Doxiciclina , Edición Génica , Ratones , Animales , Dependovirus/genética , Vectores Genéticos/genética , ARN Guía de Sistemas CRISPR-Cas , Pulmón/metabolismo , Tensoactivos/metabolismo , Sistemas CRISPR-Cas
3.
Stem Cells ; 40(5): 479-492, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35445270

RESUMEN

Late lung development is a period of alveolar and microvascular formation, which is pivotal in ensuring sufficient and effective gas exchange. Defects in late lung development manifest in premature infants as a chronic lung disease named bronchopulmonary dysplasia (BPD). Numerous studies demonstrated the therapeutic properties of exogenous bone marrow and umbilical cord-derived mesenchymal stromal cells (MSCs) in experimental BPD. However, very little is known regarding the regenerative capacity of resident lung MSCs (L-MSCs) during normal development and in BPD. In this study we aimed to characterize the L-MSC population in homeostasis and upon injury. We used single-cell RNA sequencing (scRNA-seq) to profile in situ Ly6a+ L-MSCs in the lungs of normal and O2-exposed neonatal mice (a well-established model to mimic BPD) at 3 developmental timepoints (postnatal days 3, 7, and 14). Hyperoxia exposure increased the number and altered the expression profile of L-MSCs, particularly by increasing the expression of multiple pro-inflammatory, pro-fibrotic, and anti-angiogenic genes. In order to identify potential changes induced in the L-MSCs transcriptome by storage and culture, we profiled 15 000 Ly6a+ L-MSCs after in vitro culture. We observed great differences in expression profiles of in situ and cultured L-MSCs, particularly those derived from healthy lungs. Additionally, we have identified the location of Ly6a+/Col14a1+ L-MSCs in the developing lung and propose Serpinf1 as a novel, culture-stable marker of L-MSCs. Finally, cell communication analysis suggests inflammatory signals from immune and endothelial cells as main drivers of hyperoxia-induced changes in L-MSCs transcriptome.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Células Madre Mesenquimatosas , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/terapia , Células Endoteliales , Humanos , Hiperoxia/genética , Hiperoxia/metabolismo , Recién Nacido , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Análisis de Secuencia de ARN
4.
Am J Respir Crit Care Med ; 205(10): 1186-1201, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35286238

RESUMEN

Rationale: Bronchopulmonary dysplasia, a chronic respiratory condition originating from preterm birth, is associated with abnormal neurodevelopment. Currently, there is an absence of effective therapies for bronchopulmonary dysplasia and its associated brain injury. In preclinical trials, mesenchymal stromal cell therapies demonstrate promise as a therapeutic alternative for bronchopulmonary dysplasia. Objectives: To investigate whether a multifactorial neonatal mouse model of lung injury perturbs neural progenitor cell function and to assess the ability of human umbilical cord-derived mesenchymal stromal cell extracellular vesicles to mitigate pulmonary and neurologic injury. Methods: Mice at Postnatal Day 7 or 8 were injected intraperitoneally with LPS and ventilated with 40% oxygen at Postnatal Day 9 or 10 for 8 hours. Treated animals received umbilical cord-mesenchymal stromal cell-derived extracellular vesicles intratracheally preceding ventilation. Lung morphology, vascularity, and inflammation were quantified. Neural progenitor cells were isolated from the subventricular zone and hippocampus and assessed for self-renewal, in vitro differentiation ability, and transcriptional profiles. Measurements and Main Results: The multifactorial lung injury model produced alveolar and vascular rarefaction mimicking bronchopulmonary dysplasia. Neural progenitor cells from lung injury mice showed reduced neurosphere and oligodendrocyte formation, as well as inflammatory transcriptional signatures. Mice treated with mesenchymal stromal cell extracellular vesicles showed significant improvement in lung architecture, vessel formation, and inflammatory modulation. In addition, we observed significantly increased in vitro neurosphere formation and altered neural progenitor cell transcriptional signatures. Conclusions: Our multifactorial lung injury model impairs neural progenitor cell function. Observed pulmonary and neurologic alterations are mitigated by intratracheal treatment with mesenchymal stromal cell-derived extracellular vesicles.


Asunto(s)
Displasia Broncopulmonar , Vesículas Extracelulares , Lesión Pulmonar , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Nacimiento Prematuro , Animales , Displasia Broncopulmonar/terapia , Femenino , Humanos , Recién Nacido , Pulmón , Lesión Pulmonar/terapia , Ratones , Embarazo
5.
Pediatr Res ; 89(4): 803-813, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32434214

RESUMEN

BACKGROUND: Bronchopulmonary dysplasia (BPD), the most common complication of prematurity, arises from various factors that compromise lung development, including oxygen and inflammation. Hyperoxia has been used to mimic the disease in newborn rodents. The use of a second hit to induce systemic inflammation has been suggested as an added strategy to better mimic the inflammatory aspect of BPD. Here we report a novel 2 hit (2HIT) BPD model with in-depth characterization of the innate immune response, enabling mechanistic studies of therapies with an immunomodulatory component. METHODS: C57BL/6N mice were exposed to 85% O2 from postnatal day (P)1 to P7, and received postnatally (P3) Escherichia coli LPS. At various timepoints, immune activation in the lung and at the systemic level was analyzed by fluorescence-activated cell sorting (FACS), and gene and protein expressions. RESULTS: 2HIT mice showed fewer alveoli, increased lung compliance, and right ventricular hypertrophy. A transient proinflammatory cytokine response was observed locally and systemically. Type 2 anti-inflammatory cytokine expression was decreased in the lung together with the number of mature alveolar macrophages. Simultaneously, a Siglec-F intermediate macrophage population emerged. CONCLUSION: This study provides long-term analysis of the 2HIT model, suggesting impairment of type 2 cytokine environment and altered alveolar macrophage profile in the lung. IMPACT: We have developed a novel 2HIT mouse BPD model with postnatal LPS and hyperoxia exposure, which enables mechanistic studies of potential therapeutic strategies with an immunomodulatory component. This is the first report of in-depth characterization of the lung injury and recovery describing the evolution of the innate immune response in a standardized mouse model for experimental BPD with postnatal LPS and hyperoxia exposure. The 2HIT model has the potential to help understand the link between inflammation and impaired lung development, and will enable testing of new therapies in a short and more robust manner.


Asunto(s)
Displasia Broncopulmonar/inmunología , Inmunidad Innata , Inflamación/inmunología , Oxígeno/metabolismo , Animales , Peso Corporal , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Hiperoxia , Lipopolisacáridos/metabolismo , Pulmón/efectos de los fármacos , Pulmón/fisiología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL
6.
Am J Respir Cell Mol Biol ; 60(5): 592-600, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30562051

RESUMEN

Exogenous mesenchymal stromal cells (MSCs) ameliorate experimental bronchopulmonary dysplasia. Moreover, data from term-born animal models and human tracheal aspirate-derived cells suggest altered mesenchymal signaling in the pathophysiology of neonatal lung disease. We hypothesized that hyperoxia, a factor contributing to the development of bronchopulmonary dysplasia, perturbs human lung-resident MSC function. Mesenchymal cells were isolated from human fetal lung tissue (16-18 wk of gestation), characterized and cultured in conditions resembling either intrauterine (5% O2) or extrauterine (21% and 60% O2) atmospheres. Secretome data were compared with MSCs obtained from term umbilical cord tissues. The human fetal lung mesenchyme almost exclusively contains CD146pos. MSCs expressing SOX-2 and OCT-4, which secrete elastin, fibroblast growth factors 7 and 10, vascular endothelial growth factor, angiogenin, and other lung cell-protecting/-maturing proteins. Exposure to extrauterine atmospheres in vitro leads to excessive proliferation, reduced colony-forming ability, alterations in the cell's surface marker profile, decreased elastin deposition, and impaired secretion of factors important for lung growth. Conversely, umbilical cord-derived MSCs abundantly secreted factors that impaired lung MSCs are unable to produce. Oxygen-impaired human fetal lung MSC function may contribute to disrupted repair capacity and arrested lung growth. Exogenous MSCs may act by triggering the signaling pathways lost by impaired endogenous lung mesenchymal cells.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Oxígeno/toxicidad , Comunicación Paracrina/efectos de los fármacos , Displasia Broncopulmonar , Antígeno CD146/genética , Antígeno CD146/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Elastina/genética , Elastina/metabolismo , Feto , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 7 de Crecimiento de Fibroblastos/genética , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Edad Gestacional , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Modelos Biológicos , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Cultivo Primario de Células , Ribonucleasa Pancreática/genética , Ribonucleasa Pancreática/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Cordón Umbilical/citología , Cordón Umbilical/efectos de los fármacos , Cordón Umbilical/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Cytotherapy ; 20(1): 108-125, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29056548

RESUMEN

BACKGROUND AIMS: Bronchopulmonary dysplasia (BPD), a chronic lung disease characterized by disrupted lung growth, is the most common complication in extreme premature infants. BPD leads to persistent pulmonary disease later in life. Alveolar epithelial type 2 cells (AEC2s), a subset of which represent distal lung progenitor cells (LPCs), promote normal lung growth and repair. AEC2 depletion may contribute to persistent lung injury in BPD. We hypothesized that induced pluripotent stem cell (iPSC)-derived AECs prevent lung damage in experimental oxygen-induced BPD. METHODS: Mouse AECs (mAECs), miPSCs/mouse embryonic stem sells, human umbilical cord mesenchymal stromal cells (hUCMSCs), human (h)iPSCs, hiPSC-derived LPCs and hiPSC-derived AECs were delivered intratracheally to hyperoxia-exposed newborn mice. Cells were pre-labeled with a red fluorescent dye for in vivo tracking. RESULTS: Airway delivery of primary mAECs and undifferentiated murine pluripotent cells prevented hyperoxia-induced impairment in lung function and alveolar growth in neonatal mice. Similar to hUCMSC therapy, undifferentiated hiPSCs also preserved lung function and alveolar growth in hyperoxia-exposed neonatal NOD/SCID mice. Long-term assessment of hiPSC administration revealed local teratoma formation and cellular infiltration in various organs. To develop a clinically relevant cell therapy, we used a highly efficient method to differentiate hiPSCs into a homogenous population of AEC2s. Airway delivery of hiPSC-derived AEC2s and hiPSC-derived LPCs, improved lung function and structure and resulted in long-term engraftment without evidence of tumor formation. CONCLUSIONS: hiPSC-derived AEC2 therapy appears effective and safe in this model and warrants further exploration as a therapeutic option for BPD and other lung diseases characterized by AEC injury.


Asunto(s)
Células Epiteliales Alveolares/citología , Hiperoxia/complicaciones , Células Madre Pluripotentes Inducidas/citología , Lesión Pulmonar/etiología , Lesión Pulmonar/terapia , Animales , Animales Recién Nacidos , Diferenciación Celular , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/ultraestructura , Lesión Pulmonar/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Oxígeno , Teratoma/patología
9.
Circulation ; 129(21): 2144-57, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24710033

RESUMEN

BACKGROUND: Bronchopulmonary dysplasia and emphysema are life-threatening diseases resulting from impaired alveolar development or alveolar destruction. Both conditions lack effective therapies. Angiogenic growth factors promote alveolar growth and contribute to alveolar maintenance. Endothelial colony-forming cells (ECFCs) represent a subset of circulating and resident endothelial cells capable of self-renewal and de novo vessel formation. We hypothesized that resident ECFCs exist in the developing lung, that they are impaired during arrested alveolar growth in experimental bronchopulmonary dysplasia, and that exogenous ECFCs restore disrupted alveolar growth. METHODS AND RESULTS: Human fetal and neonatal rat lungs contain ECFCs with robust proliferative potential, secondary colony formation on replating, and de novo blood vessel formation in vivo when transplanted into immunodeficient mice. In contrast, human fetal lung ECFCs exposed to hyperoxia in vitro and neonatal rat ECFCs isolated from hyperoxic alveolar growth-arrested rat lungs mimicking bronchopulmonary dysplasia proliferated less, showed decreased clonogenic capacity, and formed fewer capillary-like networks. Intrajugular administration of human cord blood-derived ECFCs after established arrested alveolar growth restored lung function, alveolar and lung vascular growth, and attenuated pulmonary hypertension. Lung ECFC colony- and capillary-like network-forming capabilities were also restored. Low ECFC engraftment and the protective effect of cell-free ECFC-derived conditioned media suggest a paracrine effect. Long-term (10 months) assessment of ECFC therapy showed no adverse effects with persistent improvement in lung structure, exercise capacity, and pulmonary hypertension. CONCLUSIONS: Impaired ECFC function may contribute to arrested alveolar growth. Cord blood-derived ECFC therapy may offer new therapeutic options for lung diseases characterized by alveolar damage.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Endoteliales/fisiología , Oxígeno/toxicidad , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/cirugía , Trasplante de Células Madre/métodos , Animales , Animales Recién Nacidos , Células Cultivadas , Células Endoteliales/trasplante , Feto , Células Endoteliales de la Vena Umbilical Humana/fisiología , Células Endoteliales de la Vena Umbilical Humana/trasplante , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Alveolos Pulmonares/lesiones , Ratas , Ratas Desnudas , Ratas Sprague-Dawley
10.
Am J Respir Cell Mol Biol ; 50(1): 96-105, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23962064

RESUMEN

Understanding how alveoli and the underlying capillary network develop and how these mechanisms are disrupted in disease states is critical for developing effective therapies for lung regeneration. Recent evidence suggests that lung angiogenesis promotes lung development and repair. Vascular endothelial growth factor (VEGF) preserves lung angiogenesis and alveolarization in experimental O2-induced arrested alveolar growth in newborn rats, but combined VEGF+angiopoietin 1 treatment is necessary to correct VEGF-induced vessel leakiness. Hypoxia-inducible factors (HIFs) are transcription factors that activate multiple O2-sensitive genes, including those encoding for angiogenic growth factors, but their role during postnatal lung growth is incompletely understood. By inducing the expression of a range of angiogenic factors in a coordinated fashion, HIF may orchestrate efficient and safe angiogenesis superior to VEGF. We hypothesized that HIF inhibition impairs alveolarization and that HIF activation regenerates irreversible O2-induced arrested alveolar growth. HIF inhibition by intratracheal dominant-negative adenovirus (dnHIF-1α)-mediated gene transfer or chetomin decreased lung HIF-1α, HIF-2α, and VEGF expression and led to air space enlargement and arrested lung vascular growth. In experimental O2-induced arrested alveolar growth in newborn rats, the characteristic features of air space enlargement and loss of lung capillaries were associated with decreased lung HIF-1α and HIF-2α expression. Intratracheal administration of Ad.HIF-1α restored HIF-1α, endothelial nitric oxide synthase, VEGF, VEGFR2, and Tie2 expression and preserved and rescued alveolar growth and lung capillary formation in this model. HIFs promote normal alveolar development and may be useful targets for alveolar regeneration.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Alveolos Pulmonares/fisiopatología , Regeneración/fisiología , Animales , Animales Recién Nacidos , Neovascularización Patológica/metabolismo , Neovascularización Patológica/fisiopatología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxígeno/metabolismo , Alveolos Pulmonares/metabolismo , Ratas , Receptor TIE-2/metabolismo , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
11.
Am J Obstet Gynecol ; 211(3): 263.e1-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24631434

RESUMEN

OBJECTIVE: Congenital diaphragmatic hernia (CDH) is clinically challenging because of associated lung hypoplasia (LH). There have been no validated parameters to evaluate fetal LH severity. Sildenafil has been shown to improve LH mass in nitrofen-induced pulmonary artery (PA) models, but the pulmonary vascular tone has not been evaluated in vivo. The aim of this study was to identify the PA Doppler parameter that best predicts LH severity and to investigate the efficacy of antenatal sildenafil treatment in experimental CDH. STUDY DESIGN: Nitrofen (50-60% CDH in offspring) or vehicle on E9.5 and sildenafil or vehicle on E11.5-20.5 were administrated to pregnant rats. On E20.5, PA Doppler indices were investigated with and without maternal hyperoxia. The presence/absence of CDH, lung/body weight ratio and radial saccular count were assessed at E20.5. RESULTS: At baseline, CDH rats had lower PA Doppler acceleration/ejection time ratios and pulsatility index (PI). Maternal hyperoxia resulted in a significant decrease in the PA/PI suggesting pulmonary vasodilation. In contrast, in CDH fetuses, the ipsilateral PA/PI showed little or no response to hyperoxia (P > .05), and in those with LH, PI response to maternal hyperoxia correlated positively with hernia, lung/body weight ratio (r = 0.70, P = .01). Maternal sildenafil therapy significantly improved PA response to hyperoxia and lung growth in CDH fetuses (P < .01). CONCLUSION: Pulmonary vasodilation that occurs in E20.5 fetal rats in response to maternal hyperoxia is blunted in CDH. Change in PA/PI with hyperoxia is a useful predictor of LH severity. Sildenafil improves pulmonary vascular response and lung growth in fetal CDH.


Asunto(s)
Hernias Diafragmáticas Congénitas , Pulmón/anomalías , Piperazinas/farmacología , Arteria Pulmonar/fisiología , Sulfonas/farmacología , Animales , Femenino , Hernia Diafragmática/tratamiento farmacológico , Hiperoxia/fisiopatología , Pulmón/efectos de los fármacos , Embarazo , Purinas/farmacología , Ratas , Ratas Sprague-Dawley , Flujo Sanguíneo Regional/efectos de los fármacos , Citrato de Sildenafil , Vasodilatación
12.
Thorax ; 68(5): 475-84, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23212278

RESUMEN

BACKGROUND: Bronchopulmonary dysplasia (BPD) remains a main complication of extreme prematurity and currently lacks efficient treatment. Rat bone marrow-derived mesenchymal stem cells (MSC) prevent lung injury in an oxygen-induced model of BPD. Human cord is an advantageous source of stem cells that is especially appealing for the treatment of neonatal diseases. The therapeutic benefit after established lung injury and long-term safety of cord-derived stem cells is unknown. METHODS: Human cord-derived perivascular cells (PCs) or cord blood-derived MSCs were delivered prophylactically or after established alveolar injury into the airways of newborn rats exposed to hyperoxia, a well-established BPD model. RESULTS: Rat pups exposed to hyperoxia showed the characteristic arrest in alveolar growth with air space enlargement and loss of lung capillaries. PCs and MSCs partially prevented and rescued lung function and structure. Despite therapeutic benefit, cell engraftment was low, suggesting that PCs and MSCs act via a paracrine effect. Accordingly, cell free-derived conditioned media from PCs and MSCs also exerted therapeutic benefit when used either prophylactically or therapeutically. Finally, long-term (6 months) assessment of stem cell or conditioned media therapy showed no adverse lung effects of either strategy, with persistent improvement in exercise capacity and lung structure. CONCLUSIONS: Human umbilical cord-derived PCs and MSCs exert short- and long-term therapeutic benefit without adverse lung effects in this experimental model and offer new therapeutic options for lung diseases characterised by alveolar damage.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Animales Recién Nacidos , Displasia Broncopulmonar/cirugía , Pulmón/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Cordón Umbilical/citología , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/fisiopatología , Animales , Displasia Broncopulmonar/complicaciones , Displasia Broncopulmonar/patología , Células Cultivadas , Medios de Cultivo Condicionados , Modelos Animales de Enfermedad , Humanos , Recién Nacido , Pulmón/metabolismo , Comunicación Paracrina , Ratas , Pruebas de Función Respiratoria
13.
Am J Respir Crit Care Med ; 185(5): 564-74, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22161159

RESUMEN

RATIONALE: Lung diseases characterized by alveolar damage currently lack efficient treatments. The mechanisms contributing to normal and impaired alveolar growth and repair are incompletely understood. Axonal guidance cues (AGC) are molecules that guide the outgrowth of axons to their targets. Among these AGCs, members of the Ephrin family also promote angiogenesis, cell migration, and organogenesis outside the nervous system. The role of Ephrins during alveolar growth and repair is unknown. OBJECTIVES: We hypothesized that EphrinB2 promotes alveolar development and repair. METHODS: We used in vitro and in vivo manipulation of EphrinB2 signaling to assess the role of this AGC during normal and impaired lung development. MEASUREMENTS AND MAIN RESULTS: In vivo EphrinB2 knockdown using intranasal siRNA during the postnatal stage of alveolar development in rats arrested alveolar and vascular growth. In a model of O(2)-induced arrested alveolar growth in newborn rats, air space enlargement, loss of lung capillaries, and pulmonary hypertension were associated with decreased lung EphrinB2 and receptor EphB4 expression. In vitro, EphrinB2 preserved alveolar epithelial cell viability in O(2), decreased O(2)-induced alveolar epithelial cell apoptosis, and accelerated alveolar epithelial cell wound healing, maintained lung microvascular endothelial cell viability, and proliferation and vascular network formation. In vivo, treatment with intranasal EphrinB2 decreased alveolar epithelial and endothelial cell apoptosis, preserved alveolar and vascular growth in hyperoxic rats, and attenuated pulmonary hypertension. CONCLUSION: The AGC EphrinB2 may be a new therapeutic target for lung repair and pulmonary hypertension.


Asunto(s)
Efrina-B2/fisiología , Pulmón/crecimiento & desarrollo , Neovascularización Fisiológica/fisiología , Animales , Apoptosis/fisiología , Endotelio/fisiología , Técnicas de Silenciamiento del Gen , Hipertensión Pulmonar/fisiopatología , Pulmón/irrigación sanguínea , Lesión Pulmonar/fisiopatología , Alveolos Pulmonares/irrigación sanguínea , Alveolos Pulmonares/crecimiento & desarrollo , Ratas , Receptores de la Familia Eph/fisiología , Cicatrización de Heridas/fisiología
14.
Circulation ; 123(19): 2120-31, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21537000

RESUMEN

BACKGROUND: Lung hypoplasia and persistent pulmonary hypertension of the newborn limit survival in congenital diaphragmatic hernia (CDH). Unlike other diseases resulting in persistent pulmonary hypertension of the newborn, infants with CDH are refractory to inhaled nitric oxide (NO). Nitric oxide mediates pulmonary vasodilatation at birth in part via cyclic GMP production. Phosphodiesterase type 5 (PDE5) limits the effects of NO by inactivation of cyclic GMP. Because of the limited success in postnatal management of CDH, we hypothesized that antenatal PDE5 inhibition would attenuate pulmonary artery remodeling in experimental nitrofen-induced CDH. METHODS AND RESULTS: Nitrofen administered at embryonic day 9.5 to pregnant rats resulted in a 60% incidence of CDH in the offspring and recapitulated features seen in human CDH, including structural abnormalities (lung hypoplasia, decreased pulmonary vascular density, pulmonary artery remodeling, right ventricular hypertrophy), and functional abnormalities (decreased pulmonary artery relaxation in response to the NO donor 2-(N,N-diethylamino)-diazenolate-2-oxide). Antenatal sildenafil administered to the pregnant rat from embryonic day 11.5 to embryonic day 20.5 crossed the placenta, increased fetal lung cyclic GMP and decreased active PDE5 expression. Antenatal sildenafil improved lung structure, increased pulmonary vessel density, reduced right ventricular hypertrophy, and improved postnatal NO donor 2-(N,N-diethylamino)-diazenolate-2-oxide-induced pulmonary artery relaxation. This was associated with increased lung endothelial NO synthase and vascular endothelial growth factor protein expression. Antenatal sildenafil had no adverse effect on retinal structure/function and brain development. CONCLUSIONS: Antenatal sildenafil improves pathological features of persistent pulmonary hypertension of the newborn in experimental CDH and does not alter the development of other PDE5-expressing organs. Given the high mortality/morbidity of CDH, the potential benefit of prenatal PDE5 inhibition in improving the outcome for infants with CDH warrants further studies.


Asunto(s)
Hernia Diafragmática/complicaciones , Hernias Diafragmáticas Congénitas , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/prevención & control , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Piperazinas/uso terapéutico , Sulfonas/uso terapéutico , Animales , Peso Corporal/efectos de los fármacos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Modelos Animales de Enfermedad , Femenino , Hernia Diafragmática/inducido químicamente , Hipertensión Pulmonar/fisiopatología , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/patología , Óxido Nítrico/metabolismo , Éteres Fenílicos/efectos adversos , Inhibidores de Fosfodiesterasa 5/farmacología , Piperazinas/farmacología , Embarazo , Arteria Pulmonar/fisiopatología , Purinas/farmacología , Purinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Citrato de Sildenafil , Sulfonas/farmacología
15.
Am J Physiol Lung Cell Mol Physiol ; 303(11): L967-77, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23023971

RESUMEN

Mortality and morbidity of acute lung injury and acute respiratory distress syndrome remain high because of the lack of pharmacological therapies to prevent injury or promote repair. Mesenchymal stem cells (MSCs) prevent lung injury in various experimental models, despite a low proportion of donor-derived cell engraftment, suggesting that MSCs exert their beneficial effects via paracrine mechanisms. We hypothesized that soluble factors secreted by MSCs promote the resolution of lung injury in part by modulating alveolar macrophage (AM) function. We tested the therapeutic effect of MSC-derived conditioned medium (CdM) compared with whole MSCs, lung fibroblasts, and fibroblast-CdM. Intratracheal MSCs and MSC-CdM significantly attenuated lipopolysaccharide (LPS)-induced lung neutrophil influx, lung edema, and lung injury as assessed by an established lung injury score. MSC-CdM increased arginase-1 activity and Ym1 expression in LPS-exposed AMs. In vivo, AMs from LPS-MSC and LPS-MSC CdM lungs had enhanced expression of Ym1 and decreased expression of inducible nitric oxide synthase compared with untreated LPS mice. This suggests that MSC-CdM promotes alternative macrophage activation to an M2 "healer" phenotype. Comparative multiplex analysis of MSC- and fibroblast-CdM demonstrated that MSC-CdM contained several factors that may confer therapeutic benefit, including insulin-like growth factor I (IGF-I). Recombinant IGF-I partially reproduced the lung protective effect of MSC-CdM. In summary, MSCs act through a paracrine activity. MSC-CdM promotes the resolution of LPS-induced lung injury by attenuating lung inflammation and promoting a wound healing/anti-inflammatory M2 macrophage phenotype in part via IGF-I.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Células Madre Mesenquimatosas/fisiología , Comunicación Paracrina , Lesión Pulmonar Aguda/patología , Animales , Antígenos de Diferenciación/metabolismo , Líquido del Lavado Bronquioalveolar , Permeabilidad Capilar , Diferenciación Celular , Células Cultivadas , Análisis por Conglomerados , Medios de Cultivo Condicionados , Factor I del Crecimiento Similar a la Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Lipopolisacáridos/farmacología , Pulmón/irrigación sanguínea , Pulmón/inmunología , Pulmón/patología , Activación de Macrófagos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/fisiología , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/patología , Pérdida de Peso
16.
J Clin Invest ; 132(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36136598

RESUMEN

Preterm birth is the leading cause of death in children under 5 years of age. Premature infants who receive life-saving oxygen therapy often develop bronchopulmonary dysplasia (BPD), a chronic lung disease. Infants with BPD are at a high risk of abnormal neurodevelopment, including motor and cognitive difficulties. While neural progenitor cells (NPCs) are crucial for proper brain development, it is unclear whether they play a role in BPD-associated neurodevelopmental deficits. Here, we show that hyperoxia-induced experimental BPD in newborn mice led to lifelong impairments in cerebrovascular structure and function as well as impairments in NPC self-renewal and neurogenesis. A neurosphere assay utilizing nonhuman primate preterm baboon NPCs confirmed impairment in NPC function. Moreover, gene expression profiling revealed that genes involved in cell proliferation, angiogenesis, vascular autoregulation, neuronal formation, and neurotransmission were dysregulated following neonatal hyperoxia. These impairments were associated with motor and cognitive decline in aging hyperoxia-exposed mice, reminiscent of deficits observed in patients with BPD. Together, our findings establish a relationship between BPD and abnormal neurodevelopmental outcomes and identify molecular and cellular players of neonatal brain injury that persist throughout adulthood that may be targeted for early intervention to aid this vulnerable patient population.


Asunto(s)
Displasia Broncopulmonar , Disfunción Cognitiva , Hiperoxia , Nacimiento Prematuro , Recién Nacido , Femenino , Ratones , Humanos , Animales , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Animales Recién Nacidos , Displasia Broncopulmonar/genética , Neurogénesis , Disfunción Cognitiva/etiología , Cognición , Pulmón/metabolismo
17.
Am J Respir Cell Mol Biol ; 44(2): 146-54, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20348209

RESUMEN

Bronchopulmonary dysplasia (BPD) is the main complication of extreme prematurity, resulting in part from mechanical ventilation and oxygen therapy. Currently, no specific treatment exists for BPD. BPD is characterized by an arrest in alveolar development and increased apoptosis of alveolar epithelial cells (AECs). Type 2 AECs are putative distal lung progenitor cells, capable of regenerating alveolar homeostasis after injury. We hypothesized that the protection of AEC2 death via the activation of the prosurvival Akt pathway prevents arrested alveolar development in experimental BPD. We show that the pharmacologic inhibition of the prosurvival factor Akt pathway with wortmannin during the critical period of alveolar development impairs alveolar development in newborn rats, resulting in larger and fewer alveoli, reminiscent of BPD. Conversely, in an experimental model of BPD induced by oxygen exposure of newborn rats, alveolar simplification is associated with a decreased activation of lung Akt. In vitro studies with rat lung epithelial (RLE) cells cultured in hyperoxia (95% O(2)) showed decreased apoptosis and improved cell survival after the forced expression of active Akt by adenovirus-mediated gene transfer. In vivo, adenovirus-mediated Akt gene transfer preserves alveolar architecture in the newborn rat model of hyperoxia-induced BPD. We conclude that inhibition of the prosurvival factor Akt disrupts normal lung development, whereas the expression of active Akt in experimental BPD preserves alveolar development. We speculate that the modulation of apoptosis may have therapeutic potential in lung diseases characterized by alveolar damage.


Asunto(s)
Hiperoxia/complicaciones , Lesión Pulmonar/metabolismo , Lesión Pulmonar/prevención & control , Proteínas Proto-Oncogénicas c-akt/metabolismo , Androstadienos/farmacología , Animales , Animales Recién Nacidos , Apoptosis , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Humanos , Hiperoxia/metabolismo , Hiperoxia/patología , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/prevención & control , Técnicas In Vitro , Recién Nacido , Lesión Pulmonar/etiología , Oxígeno/toxicidad , Terapia por Inhalación de Oxígeno/efectos adversos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/crecimiento & desarrollo , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , Ratas , Wortmanina
18.
J Med Imaging (Bellingham) ; 8(2): 027501, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33681410

RESUMEN

Purpose: The mean linear intercept (MLI) score is a common metric for quantification of injury in lung histopathology images. The automated estimation of the MLI score is a challenging task because it requires accurate segmentation of different biological components of the lung tissue. Therefore, the most widely used approaches for MLI quantification are based on manual/semi-automated assessment of lung histopathology images, which can be expensive and time-consuming. We describe a fully automated pipeline for MLI estimation, which is capable of producing results comparable to human raters. Approach: We use a convolutional neural network based on U-Net architecture to segment the diagnostically relevant tissue segments in the whole slide images (WSI) of the mouse lung tissue. The proposed method extracts multiple field-of-view (FOV) images from the tissue segments and screen the FOV images, rejecting images based on presence of certain biological structures (i.e., blood vessels and bronchi). We used color slicing and region growing for segmentation of different biological structures in each FOV image. Results: The proposed method was tested on ten WSIs from mice and compared against the scores provided by three human raters. In segmenting the relevant tissue segments, our method obtained a mean accuracy, Dice coefficient, and Hausdorff distance of 98.34%, 98.22%, and 109.68 µ m , respectively. Our proposed method yields a mean precision, recall, and F 1 -score of 93.37%, 83.47%, and 87.87%, respectively, in screening of FOV images. There was substantial agreement found between the proposed method and the manual scores (Fleiss Kappa score of 0.76). The mean difference between the calculated MLI score between the automated method and average rater's score was 2.33 ± 4.13 ( 4.25 % ± 5.67 % ). Conclusion: The proposed pipeline for automated calculation of the MLI score demonstrates high consistency and accuracy with human raters and can be a potential replacement for manual/semi-automated approaches in the field.

19.
Am J Respir Cell Mol Biol ; 43(2): 152-60, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19738161

RESUMEN

Bronchopulmonary dysplasia (BPD) and emphysema are significant global health problems at the extreme stages of life. Both are characterized by alveolar simplification and abnormal distal airspace enlargement due to arrested development or loss of alveoli, respectively. Both lack effective treatments. Mechanisms that inhibit distal lung growth are poorly understood. Adrenomedullin (AM), a recently discovered potent vasodilator, promotes angiogenesis and has protective effects on the cardiovascular and respiratory system. Its role in the developing lung is unknown. We hypothesized that AM promotes lung angiogenesis and alveolar development. Accordingly, we report that lung mRNA expression of AM increases during normal alveolar development. In vivo, intranasal administration of the AM antagonist, AM22-52 decreases lung capillary density (12.4 +/- 1.5 versus 18 +/- 1.5 in control animals; P < 0.05) and impairs alveolar development (mean linear intercept, 52.3 +/- 1.5 versus 43.8 +/- 1.8 [P < 0.05] and septal counts 62.0 +/- 2.7 versus 90.4 +/- 3.5 [P < 0.05]) in neonatal rats, resulting in larger and fewer alveoli, reminiscent of BPD. This was associated with decreased lung endothelial nitric oxide synthase and vascular endothelial growth factor-A mRNA expression. In experimental oxygen-induced BPD, a model of arrested lung vascular and alveolar growth, AM attenuates arrested lung angiogenesis (vessel density, 6.9 +/- 1.1 versus 16.2 +/- 1.3, P < 0.05) and alveolar development (mean linear intercept, 51.9 +/- 3.2 versus 44.4 +/- 0.7, septal counts 47.6 +/- 3.4 versus 67.7 +/- 4.0, P < 0.05), an effect in part mediated by inhibition of apoptosis. AM also prevents pulmonary hypertension in this model, as assessed by decreased right ventricular hypertrophy and pulmonary artery medial wall thickness. Our findings suggest a role for AM during normal alveolar development. AM may have therapeutic potential in diseases associated with alveolar injury.


Asunto(s)
Adrenomedulina/metabolismo , Adrenomedulina/uso terapéutico , Neovascularización Fisiológica , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/uso terapéutico , Alveolos Pulmonares/metabolismo , Administración Intranasal , Animales , Animales Recién Nacidos , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Microscopía Electrónica de Rastreo , Modelos Biológicos , Oxígeno/metabolismo , Alveolos Pulmonares/efectos de los fármacos , Arteria Pulmonar/patología , Ratas , Cicatrización de Heridas
20.
Pediatr Res ; 68(6): 519-25, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20805789

RESUMEN

Bronchopulmonary dysplasia (BPD) is characterized by arrested alveolar development and complicated by pulmonary hypertension (PH). NO promotes alveolar growth. Inhaled NO (iNO) ameliorates the BPD phenotype in experimental models and in some premature infants. Arginosuccinate synthetase (ASS) and arginosuccinate lyase (ASL) convert L-citrulline to L-arginine; L-citrulline is regenerated during NO synthesis from L-arginine. Plasma levels of these NO precursors are low in PH. We hypothesized that L-citrulline prevents experimental O2-induced BPD in newborn rats. Rat pups were assigned from birth through postnatal day (P) 14 to room air (RA), RA + L-citrulline, 95% hyperoxia (BPD model), and 95%O2 + L-citrulline. Rat pups exposed to hyperoxia had fewer and enlarged air spaces and decreased capillary density, mimicking human BPD. This was associated with decreased plasma L-arginine and L-citrulline concentrations on P7. L-citrulline treatment significantly increased plasma L-arginine and L-citrulline concentrations and increased ASL protein expression in hyperoxia. L-citrulline preserved alveolar and vascular growth in O2-exposed pups and decreased pulmonary arterial medial wall thickness (MWT) and right ventricular hypertrophy (RVH). Increased lung arginase (ARG) activity in O2-exposed pups was reversed by L-citrulline treatment. L-citrulline supplementation prevents hyperoxia-induced lung injury and PH in newborn rats. L-citrulline may represent a novel therapeutic alternative to iNO for prevention of BPD.


Asunto(s)
Animales Recién Nacidos , Displasia Broncopulmonar/prevención & control , Displasia Broncopulmonar/fisiopatología , Citrulina/uso terapéutico , Hipertensión Pulmonar/prevención & control , Alveolos Pulmonares/crecimiento & desarrollo , Animales , Arginina/sangre , Displasia Broncopulmonar/sangre , Displasia Broncopulmonar/patología , Citrulina/sangre , Citrulina/farmacología , Modelos Animales de Enfermedad , Humanos , Hipertensión Pulmonar/fisiopatología , Recién Nacido , Pulmón/patología , Pulmón/fisiopatología , Lesión Pulmonar , Óxido Nítrico/sangre , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/fisiopatología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA