Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nanomedicine ; 29: 102268, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32663511

RESUMEN

Here we propose a one-step strategy to endow nanomaterials with a custom-designed bio-identity. This study designs a universal 'nanomaterial binding domain' that can be genetically attached to any protein ensuring precise and spontaneous protein orientation. We demonstrate how, despite the simplicity of the method, the bioconjugation achieved: (i) is highly efficient, even in the presence of competing proteins, (ii) is stable at extreme physiological conditions (pH ranges 5.2-9.0; NaCl concentrations 0-1 M); (iii) prevents unwanted protein biofouling days after incubation in biologically-relevant conditions; and finally, (iv) avoids nanoparticle interaction with promiscuous unspecific receptors. In summary, this protein biocoating technique, applicable to a wide array of nano-designs, integrates material science and molecular biology procedures to create hybrid nanodevices with well-defined surfaces and predictable biological behaviors, opening a chapter in precision nanodiagnostics, nanosensing or nanotherapeutic applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanomedicina/tendencias , Nanopartículas/química , Nanoestructuras/química , Humanos , Nanopartículas/análisis , Nanopartículas/uso terapéutico , Nanoestructuras/análisis , Nanoestructuras/uso terapéutico , Unión Proteica/efectos de los fármacos , Dominios Proteicos/efectos de los fármacos , Proteínas/química
2.
Inorg Chem ; 58(20): 13815-13825, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31588739

RESUMEN

The chelating ligand 1,3-bis(tris(hydroxymethyl)methylamino)propane (H6L) has been used to synthesize a family of octanuclear heterometallic complexes with the formula (NMe4)3[Mn4Ln4(H2L)3(H3L)(NO3)12] (Ln = La (1), Ce (2), Pr (3), Nd (4)). Encapsulation by the ligand causes the Mn(III) centers to lie in an unusually distorted (∼C2v) environment, which is shown by density functional theory and complete active space self-consistent field calculations to impact on the magnetic anisotropy of the Mn(III) ion. The theoretical study also supports the experimental observation of a ferromagnetic superexchange interaction between the Mn(III) ions in 1, despite the ions being separated by the diamagnetic La(III) ion. The optical properties of the compounds show that the distortion of the Mn(III) ions leads to three broad absorption bands originating from the transition metal ion, while the Nd(III) containing complex also displays some weak sharp features arising from the lanthanide f-f transitions.

3.
Molecules ; 24(10)2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31137795

RESUMEN

The crystal structure of 4-iodobenzonitrile, which is monoclinic (space group I2/a) under ambient conditions, contains chains of molecules linked through C≡N···I halogen-bonds. The chains interact through CH···I, CH···N and π-stacking contacts. The crystal structure remains in the same phase up to 5.0 GPa, the b axis compressing by 3.3%, and the a and c axes by 12.3 and 10.9 %. Since the chains are exactly aligned with the crystallographic b axis these data characterise the compressibility of the I···N interaction relative to the inter-chain interactions, and indicate that the halogen bond is the most robust intermolecular interaction in the structure, shortening from 3.168(4) at ambient pressure to 2.840(1) Å at 5.0 GPa. The π∙∙∙π contacts are most sensitive to pressure, and in one case the perpendicular stacking distance shortens from 3.6420(8) to 3.139(4) Å. Packing energy calculations (PIXEL) indicate that the π∙∙∙π interactions have been distorted into a destabilising region of their potentials at 5.0 GPa. The structure undergoes a transition to a triclinic ( P 1 ¯ ) phase at 5.5 GPa. Over the course of the transition, the initially colourless and transparent crystal darkens on account of formation of microscopic cracks. The resistance drops by 10% and the optical transmittance drops by almost two orders of magnitude. The I···N bond increases in length to 2.928(10) Å and become less linear [

Asunto(s)
Halógenos/química , Nitrilos/química , Presión , Cristalización , Diamante/química , Dimerización , Electrones , Oro/química , Conformación Molecular , Fonones , Espectrofotometría Ultravioleta , Espectrometría Raman , Termodinámica
4.
J Sci Food Agric ; 98(1): 291-303, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28585252

RESUMEN

BACKGROUND: Verdejo and Tempranillo are traditional varieties for producing still wines; however, they could provide an alternative for the manufacturing of sparkling wines. Sparkling wines were elaborated by the traditional method, followed by ageing on lees for 9 months. A study on the changes that take place in polysaccharides, oligosaccharides and nitrogenous compounds during the ageing on lees of Tempranillo and Verdejo sparkling wines has been undertaken. RESULTS: Mannoproteins and the glucose residue of oligosaccharides were the major carbohydrates detected in all vinification stages. Yeast polysaccharides and glucan-like structures of the oligosaccharides increased after 3 months of ageing. The evolution of yeast polysaccharides and the composition of PRAG-like structure were different among grape varieties. A decrease in amino acids and biogenic amines was observed during the ageing. The contents of polysaccharides, oligosaccharides and nitrogenous compound were significantly higher in Tempranillo than in Verdejo sparkling wines at the end of the ageing period. CONCLUSION: Polysaccharides and oligosaccharides from yeast were more significant autolysis markers of sparkling wines than the nitrogenous compounds. Our data suggest a potential cultivar effect on the evolution of yeast polysaccharides and on the composition of PRAG, which may influence the physico-chemical and sensory properties of sparkling wines. © 2017 Society of Chemical Industry.


Asunto(s)
Oligosacáridos/química , Polisacáridos/química , Vitis/química , Vino/análisis , Aminoácidos/química , Fermentación , Frutas/química , Frutas/microbiología , Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Vitis/microbiología , Vino/microbiología
5.
J Sci Food Agric ; 97(12): 4029-4035, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28195329

RESUMEN

BACKGROUND: Monastrell is a red grape cultivar adapted to the dry environmental conditions of Murcia, SE Spain. Its berries seem to be characterized by a rigid cell wall structure, which could make difficult the winemaking process. Cabernet Sauvignon cultivar is used to complement Monastrell wines in this region owing to its high phenolic content with high extractability. This study explores the skin cell wall composition of grapes from plants resulting from intraspecific crosses of Vitis vinifera cultivars Monastrell × Cabernet Sauvignon. Moreover, the morphology of the cell wall material (CWM) from some representative samples was visualized by transmission optical microscopy. RESULTS: The total sugar content of CWM from nine out of ten genotypes of the progeny was lower than that from Monastrell. Seven out of ten genotypes showed lower phenolic content than Cabernet Sauvignon. The CWM from nine out of ten hybrids presented lower protein content than that from Monastrell. CONCLUSION: This study confirms that skin cell walls from Monastrell × Cabernet Sauvignon hybrid grapes presented major differences in composition compared with their parents. These data could help in the development of new cultivars adapted to the dry conditions of SE Spain and with a cell wall composition favouring extractability. © 2017 Society of Chemical Industry.


Asunto(s)
Pared Celular/química , Frutas/química , Vitis/química , Vino/análisis , Antocianinas/análisis , Pared Celular/genética , Quimera/genética , Frutas/genética , Genotipo , Hibridación Genética , Fenoles/análisis , Proteínas de Plantas/análisis , Vitis/genética
6.
Phys Chem Chem Phys ; 18(39): 27396-27404, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27722287

RESUMEN

Samples of 0.01% and 0.3% Tm3+-doped ß-NaYF4 show upconverted UV luminescence at 27 660 cm-1 (361 nm) after blue excitation at 21 140 cm-1 (473 nm). Contradictory upconversion mechanisms in the literature are reviewed and two of them are investigated in detail. Their agreement with emission and two-color excitation experiments is examined and compared. Decay curves are analyzed using the Inokuti-Hirayama model, an average rate equation model, and a microscopic rate equation model that includes the correct extent of energy transfer. Energy migration is found to be negligible in these samples, and hence the average rate equation model fails to correctly describe the decay curves. The microscopic rate equation model accurately fits the experimental data and reveals the strength and multipolarity of various interactions. This microscopic model is able to determine the most likely upconversion mechanism.

7.
Inorg Chem ; 53(19): 10708-15, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25244664

RESUMEN

This work reports an X-ray diffraction, X-ray absorption, and Raman spectroscopy study of [(CH3)4N]2MnX4 (X = Cl, Br) under pressure. We show that both compounds share a similar phase diagram with pressure. A P21/c monoclinic structure describes precisely the [(CH3)4N]2MnCl4 crystal in the 0.1-6 GPa range, prior to crystal decomposition and amorphization, while [(CH3)4N]2MnBr4 can be described by a Pmcn orthorhombic structure in its stability pressure range of 0-3 GPa. These materials are attractive systems for pressure studies since they are readily compressible through the weak interaction between organic/inorganic [(CH3)4N⁺/MnX4²â»] tetrahedra through hydrogen bonds and contrast with the small compressibility of both tetrahedra. Here we determine the equation-of-state (EOS) of each crystal and compare it with the corresponding local EOS of the MnX4²â» and (CH3)4N⁺ tetrahedra, the compressibility of which is an order and 2 orders of magnitude smaller than the crystal compressibility, respectively, in both chloride and bromide. The variations of the Mn-Cl bond distance obtained by extended X-ray absorption fine structure and the frequency of the totally symmetric ν1(A1) Raman mode of MnCl4²â» with pressure in [(CH3)4N]2MnCl4 allowed us to determine the associated Grüneisen parameter (γ(loc) = 1.15) and hence an accurate local EOS. On the basis of a local compressibility model, we obtained the Grüneisen parameters and corresponding variations of the intramolecular Mn­Br and C­N bond distances of MnBr4²â» (γ(loc) = 1.45) and (CH3)4N⁺ (γ(loc) = 3.0) in [(CH3)4N]2MnBr4.

8.
Inorg Chem ; 53(17): 8970-8, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25101774

RESUMEN

New {TbCu3} and {DyCu3} single-molecule magnets (SMMs) containing a low-symmetry Ln(III) center (shape measurements relative to a trigonal dodecahedron and biaugmented trigonal prism are 2.2-2.3) surrounded by three Cu(II) metalloligands are reported. SMM behavior is confirmed by frequency-dependent out-of-phase ac susceptibility signals and single-crystal temperature and sweep rate dependent hysteresis loops. The ferromagnetic exchange interactions between the central Ln(III) ion and the three Cu(II) ions could be accurately measured by inelastic neutron scattering (INS) spectroscopy and modeled effectively. The excitations observed by INS correspond to flipping of Cu(II) spins and appear at energies similar to the thermodynamic barrier for relaxation of the magnetization, ~15-20 K, and are thus at the origin of the SMM behavior. The magnetic quantum number M(tot) of the cluster ground state of {DyCu3} is an integer, whereas it is a half-integer for {TbCu3}, which explains their vastly different quantum tunneling of the magnetization behavior despite similar energy barriers.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38561623

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM), the most prevalent form of central nervous system (CNS) cancer, stands as a highly aggressive glioma deemed virtually incurable according to the World Health Organization (WHO) standards, with survival rates typically falling between 6 to 18 months. Despite concerted efforts, advancements in survival rates have been elusive. Recent cutting-edge research has unveiled bionanocatalysts with 1% Pt, demonstrating unparalleled selectivity in cleaving C-C, C-N, and C-O bonds within DNA in malignant cells. The application of these nanoparticles has yielded promising outcomes. OBJECTIVE: The objective of this study is to employ bionanocatalysts for the treatment of Glioblastoma Multiforme (GBM) in a patient, followed by the evaluation of obtained tissues through electronic microscopy. METHODS: Bionanocatalysts were synthesized using established protocols. These catalysts were then surgically implanted into the GBM tissue through stereotaxic procedures. Subsequently, tissue samples were extracted from the patient and meticulously examined using Scanning Electron Microscopy (SEM). RESULTS AND DISCUSSION: Detailed examination of biopsies via SEM unveiled a complex network of small capillaries branching from a central vessel, accompanied by a significant presence of solid carbonate formations. Remarkably, the patient subjected to this innovative approach exhibited a three-year extension in survival, highlighting the potential efficacy of bionanocatalysts in combating GBM and its metastases. CONCLUSION: Bionanocatalysts demonstrate promise as a viable treatment option for severe cases of GBM. Additionally, the identification of solid calcium carbonate formations may serve as a diagnostic marker not only for GBM but also for other CNS pathologies.

10.
Sci Rep ; 14(1): 7404, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548783

RESUMEN

Optical fiber with YPO4:Pr3+ nanocrystals (NCs) is presented for the first time using the glass powder-NCs doping method. The method's advantage is separate preparation of NCs and glass to preserve luminescent and optical properties of NCs once they are incorporated into optical fiber. The YPO4:Pr3+ nanocrystals were synthesized by the co-precipitation and hydrothermal methods, optimized for size (< 100 nm), shape, Pr3+ ions concentration (0.2 mol%), and emission lifetime. The core glass was selected from the non-silica P2O5-containing system with refractive index (n = 1.788) close to the NCs (no = 1.657, ne = 1.838). Optical fiber was drawn by modified powder-in-tube method after pre-sintering of glass powder-YPO4:Pr3+ (wt 3%) mixture to form optical fiber preform. Luminescent properties of YPO4:Pr3+ and optical fiber showed their excellent agreement, including sharp Pr3+ emission at 600 nm (1D2-3H4) and 1D2 level lifetime (τ = 156 ± 5 µs) under 488 nm excitation. The distribution of the YPO4:Pr3+ NCs in optical fiber were analyzed by TEM-EDS in the core region (FIB-SEM-prepared). The successful usage of glass powder-NCs doping method was discussed in the aspect of promising properties of the first YPO4:Pr3+ doped optical fiber as a new way to develop active materials for lasing applications, among others.

11.
Int J Nanomedicine ; 17: 5747-5760, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466783

RESUMEN

Introduction: A great challenge in nanomedicine, and more specifically in theranostics, is to improve the specificity, selectivity, and targeting of nanomaterials towards target tissues or cells. The topical use of nanomedicines as adjuvants to systemic chemotherapy can significantly improve the survival of patients affected by localized carcinomas, reducing the side effects of traditional drugs and preventing local recurrences. Methods: Here, we have used the Shiga toxin, to design a safe, high-affinity protein-ligand (ShTxB) to bind the globotriaosylceramide receptor (GB3) that is overexpressed on the surfaces of preneoplastic and malignant cancer cells in the head and neck tumors. Results: We find that ShTxB functionalized gold nanorods are efficiently retrotranslocated to the GB3-positive cell cytoplasms. After 3 minutes of laser radiation with a wavelength resonant with the AuNR longitudinal localized surface plasmon, the death of the targeted cancer cells is activated. Both preclinical murine models and patient biopsy cells show the non-cytotoxic nature of these functionalized nanoparticles before light activation and their treatment selectivity. Discussion: These results show how the use of nanomedicines directed by natural ligands can represent an effective treatment for aggressive localized cancers, such as squamous cell carcinoma of the oral cavity.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Nanotubos , Humanos , Animales , Ratones , Oro , Toxina Shiga , Neoplasias de la Boca/tratamiento farmacológico
12.
Acta Crystallogr B ; 67(Pt 3): 226-37, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21586830

RESUMEN

Bianthrone [10(10-oxoanthracen-9-ylidene)anthracen-9-one] consists of two tricyclic anthraceneone units connected by a carbon-carbon double bond. Crystals of the form obtained under ambient conditions are yellow and contain folded centrosymmetric conformers in which the central ring of the anthraceneone unit is non-planar. When hydrostatic pressure is applied the crystals assume a red colouration which gradually deepens as pressures increases. The colour change is limited in extent to the surface of the crystals, the bulk remaining yellow. Comparison of high-pressure, single-crystal UV-vis spectra and powder diffraction data demonstrate that the colour change is associated with the formation of a polymorph containing a conformer in which the tricyclic fragments are planar and the molecule is twisted about the central C-C bond. Single-crystal diffraction data collected as a function of pressure up to 6.5 GPa reveal the effect of compression on the yellow form, which consists of layers of molecules which stack along the [010] direction. The structure remains in a compressed form of the ambient-pressure phase when subjected to hydrostatic pressure up to 6.5 GPa, and the most prominent effect of pressure is to push the layers closer together. PIXEL calculations show that considerable strain builds up in the crystal as pressure is increased with a number of intermolecular contacts being pushed into destabilizing regions of their potentials.


Asunto(s)
Antracenos/química , Presión , Cristalización , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Teoría Cuántica , Espectrofotometría Ultravioleta
13.
Nanomaterials (Basel) ; 11(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34947516

RESUMEN

A versatile, functional nanomaterial for the removal of ionic and non-ionic pollutants is presented in this work. For that purpose, the high charge mica Na-4-Mica was exchanged with the cationic surfactant (C16H33NH(CH3)2)+. The intercalation of the tertiary amine in the swellable nano-clay provides the optimal hydrophilic/hydrophobic nature in the bidimensional galleries of the nanomaterial responsible for the dual functionality. The organo-mica, made by functionalization with C16H33NH3+, was also synthesized for comparison purposes. Both samples were characterized by X-ray diffraction techniques and transmission electron microscopy. Then, the samples were exposed to a saturated atmosphere of cyclohexylamine for two days, and the adsorption capacity was evaluated by thermogravimetric measurements. Eu3+ cations served as a proof of concept for the adsorption of ionic pollutants in an aqueous solution. Optical measurements were used to identify the adsorption mechanism of Eu3+ cations, since Eu3+ emissions, including the relative intensity of different f-f transitions and the luminescence lifetime, can be used as an ideal spectroscopic probe to characterize the local environment. Finally, the stability of the amphiphilic hybrid nanomaterial after the adsorption was also tested.

14.
Pharmaceutics ; 13(1)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451053

RESUMEN

Solid lipid particles (SLPs) can sustainably encapsulate and release therapeutic agents over long periods, modifying their biodistribution, toxicity, and side effects. To date, no studies have been reported using SLPs loaded with doxorubicin chemotherapy for the treatment of metastatic cancer. This study characterizes the effect of doxorubicin-loaded carnauba wax particles in the treatment of lung metastatic malignant melanoma in vivo. Compared with the free drug, intravenously administrated doxorubicin-loaded SLPs significantly reduce the number of pulmonary metastatic foci in mice. In vitro kinetic studies show two distinctive drug release profiles. A first chemotherapy burst-release wave occurs during the first 5 h, which accounts for approximately 30% of the entrapped drug rapidly providing therapeutic concentrations. The second wave occurs after the arrival of the particles to the final destination in the lung. This release is sustained for long periods (>40 days), providing constant levels of chemotherapy in situ that trigger the inhibition of metastatic growth. Our findings suggest that the use of chemotherapy with loaded SLPs could substantially improve the effectiveness of the drug locally, reducing side effects while improving overall survival.

15.
Food Chem ; 342: 128330, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33067045

RESUMEN

Oligosaccharides are carbohydrates with a low polymerization degree containing between three and fifteen monosaccharide residues covalently linked through glycosidic bonds. Oligosaccharides are related to plant defense responses and possess beneficial attributes for human health. Research has focused in wine oligosaccharides only in the last decade. In this paper, a summary of these works is provided. They include: (i) wine oligosaccharides origins, (ii) techniques for isolating oligosaccharide fraction and determining their content, composition and structure, (iii) their dependence on the grape origin and cultivar and winemaking process, and (iv) the connection between oligosaccharides and wine sensorial attributes. Further research is required regarding the impact of agricultural aspects and winemaking techniques on wine oligosaccharides. The knowledge concerning their influence on sensorial and physicochemical properties of wines and on human health should also be improved. The implementation of laboratory methods will provide better understanding of these compounds and their performance within wine's matrix.


Asunto(s)
Oligosacáridos/análisis , Oligosacáridos/química , Vino/análisis , Humanos , Gusto , Vitis/química
16.
J Phys Chem C Nanomater Interfaces ; 125(36): 19887-19896, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34557262

RESUMEN

The development of optical nanothermometers operating in the near-infrared (NIR) is of high relevance toward temperature measurements in biological systems. We propose herein the use of Nd3+-doped lanthanum oxychloride nanocrystals as an efficient system with intense photoluminescence under NIR irradiation in the first biological transparency window and emission in the second biological window with excellent emission stability over time under 808 nm excitation, regardless of Nd3+ concentration, which can be considered as a particular strength of our system. Additionally, surface passivation through overgrowth of an inert LaOCl shell around optically active LaOCl/Nd3+ cores was found to further enhance the photoluminescence intensity and also the lifetime of the 1066 nm, 4F3/2 to 4I11/2 transition, without affecting its (ratiometric) sensitivity toward temperature changes. As required for biological applications, we show that the obtained (initially hydrophobic) nanocrystals can be readily transferred into aqueous solvents with high, long-term stability, through either ligand exchange or encapsulation with an amphiphilic polymer.

17.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638405

RESUMEN

Head and Neck Cancer (HNC) is the seventh most common cancer worldwide with a 5-year survival from diagnosis of 50%. Currently, HNC is diagnosed by a physical examination followed by an histological biopsy, with surgery being the primary treatment. Here, we propose the use of targeted nanotechnology in support of existing diagnostic and therapeutic tools to prevent recurrences of tumors with poorly defined or surgically inaccessible margins. We have designed an innocuous ligand-protein, based on the receptor-binding domain of the Shiga toxin (ShTxB), that specifically drives nanoparticles to HNC cells bearing the globotriaosylceramide receptor on their surfaces. Microscopy images show how, upon binding to the receptor, the ShTxB-coated nanoparticles cause the clustering of the globotriaosylceramide receptors, the protrusion of filopodia, and rippling of the membrane, ultimately allowing the penetration of the ShTxB nanoparticles directly into the cell cytoplasm, thus triggering a biomimetic cellular response indistinguishable from that triggered by the full-length Shiga toxin. This functionalization strategy is a clear example of how some toxin fragments can be used as natural biosensors for the detection of some localized cancers and to target nanomedicines to HNC lesions.

18.
Food Chem ; 354: 129477, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-33756317

RESUMEN

Foam is the first attribute observed when sparkling wine is served. Bentonite is essentially used to flocculate particles in sparkling base wines but can impair their foamability. Gums from Acacia senegal and Acacia seyal improved the foamability of different bentonite-treated base wines. Our main goal was to see how the supplementation with new fractions separated from Acacia gums by Ion Exchange Chromatography affected foamability of sparkling base wines, deepening the relation between foam behavior and characteristics of wine and gums. High molar mass fractions increased the maximal foam height and the foam height during the stability period in, respectively, 11 out and 8 out of 16 cases (69% and 50%, respectively). The properties of the supplementing gums fractions obtained by IEC and, although to a minor extent, the wine characteristics, affected positively and/or negatively the foam behavior. Wine foamability also depended on the relationship between wine and gums fractions properties.


Asunto(s)
Goma Arábiga/química , Vino/análisis , Acacia/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Peso Molecular
19.
ACS Appl Mater Interfaces ; 12(34): 37807-37810, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32846470

RESUMEN

In recent years, two-dimensional perovskites have received considerable attention for their potential applications for optoelectronics. Contrary to previous publications, we demonstrate that (CH3NH3)2CuCl4 hybrid organic-inorganic layered perovskite does not show any room-temperature photoluminescence (PL) under UV excitation. This statement can be extended to other perovskites with general formula AMX3 or A2MX4, based on M: Cu2+ and X: Cl- or Br-. These materials, the object of increasing interest because of their efficient light absorption in a wide UV-vis-NIR range ideal for solar cells and optoelectronics, lack PL at room temperature, in contrast to recent findings reporting PL properties in this and other similar Cu2+-related materials.

20.
Nanomaterials (Basel) ; 10(4)2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32268581

RESUMEN

Over the last few decades the insulating performance of transformer oils has been broadly studied under the point of view of nanotechnology, which tries to improve the insulating and heat dissipation performance of transformer oils by suspending nanoparticles. Many authors have analyzed the thermal and dielectric behavior of vegetable oil based-nanofluids, however, very few works have studied the evolution of these liquids during thermal aging and their stability. In this paper has been evaluated the performance of aged vegetable oil based-nanofluids, which have been subjected to accelerated thermal aging at 150 °C. Nanoparticles of TiO2 and ZnO have been dispersed in a commercial natural ester. Breakdown voltage, resistivity, dissipation factor and acidity of nanofluid samples have been measured according to standard methods, as well as stability. Moreover, it has been analyzed the degradation of Kraft paper through the degree of polymerization (DP). The results have showed that although nanoparticles improve breakdown voltage, they increase the ageing of insulation liquids and dielectric paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA