Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8015): 141-148, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778097

RESUMEN

Fentanyl is a powerful painkiller that elicits euphoria and positive reinforcement1. Fentanyl also leads to dependence, defined by the aversive withdrawal syndrome, which fuels negative reinforcement2,3 (that is, individuals retake the drug to avoid withdrawal). Positive and negative reinforcement maintain opioid consumption, which leads to addiction in one-fourth of users, the largest fraction for all addictive drugs4. Among the opioid receptors, µ-opioid receptors have a key role5, yet the induction loci of circuit adaptations that eventually lead to addiction remain unknown. Here we injected mice with fentanyl to acutely inhibit γ-aminobutyric acid-expressing neurons in the ventral tegmental area (VTA), causing disinhibition of dopamine neurons, which eventually increased dopamine in the nucleus accumbens. Knockdown of µ-opioid receptors in VTA abolished dopamine transients and positive reinforcement, but withdrawal remained unchanged. We identified neurons expressing µ-opioid receptors in the central amygdala (CeA) whose activity was enhanced during withdrawal. Knockdown of µ-opioid receptors in CeA eliminated aversive symptoms, suggesting that they mediate negative reinforcement. Thus, optogenetic stimulation caused place aversion, and mice readily learned to press a lever to pause optogenetic stimulation of CeA neurons that express µ-opioid receptors. Our study parses the neuronal populations that trigger positive and negative reinforcement in VTA and CeA, respectively. We lay out the circuit organization to develop interventions for reducing fentanyl addiction and facilitating rehabilitation.


Asunto(s)
Fentanilo , Receptores Opioides mu , Refuerzo en Psicología , Animales , Femenino , Masculino , Ratones , Analgésicos Opioides/farmacología , Analgésicos Opioides/administración & dosificación , Núcleo Amigdalino Central/citología , Núcleo Amigdalino Central/efectos de los fármacos , Núcleo Amigdalino Central/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Fentanilo/farmacología , Ratones Endogámicos C57BL , Núcleo Accumbens/citología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Trastornos Relacionados con Opioides/metabolismo , Trastornos Relacionados con Opioides/patología , Optogenética , Receptores Opioides mu/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/patología , Área Tegmental Ventral/citología , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo
2.
Neurobiol Dis ; 198: 106559, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852753

RESUMEN

Parkinson's disease is caused by a selective vulnerability and cell loss of dopaminergic neurons of the Substantia Nigra pars compacta and, consequently, striatal dopamine depletion. In Parkinson's disease therapy, dopamine loss is counteracted by the administration of L-DOPA, which is initially effective in ameliorating motor symptoms, but over time leads to a burdening side effect of uncontrollable jerky movements, termed L-DOPA-induced dyskinesia. To date, no efficient treatment for dyskinesia exists. The dopaminergic and serotonergic systems are intrinsically linked, and in recent years, a role has been established for pre-synaptic 5-HT1a/b receptors in L-DOPA-induced dyskinesia. We hypothesized that post-synaptic serotonin receptors may have a role and investigated the effect of modulation of 5-HT4 receptor on motor symptoms and L-DOPA-induced dyskinesia in the unilateral 6-OHDA mouse model of Parkinson's disease. Administration of RS 67333, a 5-HT4 receptor partial agonist, reduces L-DOPA-induced dyskinesia without altering L-DOPA's pro-kinetic effect. In the dorsolateral striatum, we find 5-HT4 receptor to be predominantly expressed in D2R-containing medium spiny neurons, and its expression is altered by dopamine depletion and L-DOPA treatment. We further show that 5-HT4 receptor agonism not only reduces L-DOPA-induced dyskinesia, but also enhances the activation of the cAMP-PKA pathway in striatopallidal medium spiny neurons. Taken together, our findings suggest that agonism of the post-synaptic serotonin receptor 5-HT4 may be a novel therapeutic approach to reduce L-DOPA-induced dyskinesia.


Asunto(s)
Discinesia Inducida por Medicamentos , Levodopa , Oxidopamina , Animales , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/farmacología , Oxidopamina/toxicidad , Ratones , Masculino , Ratones Endogámicos C57BL , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Antiparkinsonianos/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Piridinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Piperidinas , Pirimidinas
3.
Neurobiol Dis ; 176: 105949, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496200

RESUMEN

The serotonin 5-HT6 receptor (5-HT6R) is a promising target to improve cognitive symptoms of psychiatric diseases of neurodevelopmental origin, such as autism spectrum disorders and schizophrenia. However, its expression and localization at different stages of brain development remain largely unknown, due to the lack of specific antibodies to detect endogenous 5-HT6R. Here, we used transgenic mice expressing a GFP-tagged 5-HT6R under the control of its endogenous promoter (Knock-in) as well as embryonic stem cells expressing the GFP-tagged receptor to extensively characterize its expression at cellular and subcellular levels during development. We show that the receptor is already expressed at E13.5 in the cortex, the striatum, the ventricular zone, and to a lesser extent the subventricular zone. In adulthood, it is preferentially found in projection neurons of the hippocampus and cerebral cortex, in striatal medium-sized spiny neurons, as well as in a large proportion of astrocytes, while it is expressed in a minor population of interneurons. Whereas the receptor is almost exclusively detected in the primary cilia of neurons at embryonic and adult stages and in differentiated stem cells, it is located in the somatodendritic compartment of neurons from some brain regions at the neonatal stage and in the soma of undifferentiated stem cells. Finally, knocking-out the receptor induces a shortening of the primary cilium, suggesting that it plays a role in its function. This study provides the first global picture of 5-HT6R expression pattern in the mouse brain at different developmental stages. It reveals dynamic changes in receptor localization in neurons at the neonatal stage, which might underlie its key role in neuronal differentiation and psychiatric disorders of neurodevelopmental origin.


Asunto(s)
Neuronas , Serotonina , Ratones , Animales , Serotonina/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos
4.
Proc Biol Sci ; 290(2006): 20231224, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37670585

RESUMEN

Sexually dimorphic behaviours, such as parental care, have long been thought to be mainly driven by gonadal hormones. In the past two decades, a few studies have challenged this view, highlighting the direct influence of the sex chromosome complement (XX versus XY or ZZ versus ZW). The African pygmy mouse, Mus minutoides, is a wild mouse species with naturally occurring XY sex reversal induced by a third, feminizing X* chromosome, leading to three female genotypes: XX, XX* and X*Y. Here, we show that sex reversal in X*Y females shapes a divergent maternal care strategy (maternal aggression, pup retrieval and nesting behaviours) from both XX and XX* females. Although neuroanatomical investigations were inconclusive, we show that the dopaminergic system in the anteroventral periventricular nucleus of the hypothalamus is worth investigating further as it may support differences in pup retrieval behaviour between females. Combining behaviours and neurobiology in a rodent subject to natural selection, we evaluate potential candidates for the neural basis of maternal behaviours and strengthen the underestimated role of the sex chromosomes in shaping sex differences in brain and behaviours. All things considered, we further highlight the emergence of a third sexual phenotype, challenging the binary view of phenotypic sexes.


Asunto(s)
Conducta Materna , Ratones , Caracteres Sexuales , Sexo , Animales , Femenino , Masculino , Agresión , Encéfalo
5.
Mol Psychiatry ; 27(4): 2068-2079, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35177825

RESUMEN

Forebrain dopamine-sensitive (dopaminoceptive) neurons play a key role in movement, action selection, motivation, and working memory. Their activity is altered in Parkinson's disease, addiction, schizophrenia, and other conditions, and drugs that stimulate or antagonize dopamine receptors have major therapeutic applications. Yet, similarities and differences between the various neuronal populations sensitive to dopamine have not been systematically explored. To characterize them, we compared translating mRNAs in the dorsal striatum and nucleus accumbens neurons expressing D1 or D2 dopamine receptor and prefrontal cortex neurons expressing D1 receptor. We identified genome-wide cortico-striatal, striatal D1/D2 and dorso/ventral differences in the translating mRNA and isoform landscapes, which characterize dopaminoceptive neuronal populations. Expression patterns and network analyses identified novel transcription factors with presumptive roles in these differences. Prostaglandin E2 (PGE2) was a candidate upstream regulator in the dorsal striatum. We pharmacologically explored this hypothesis and showed that misoprostol, a PGE2 receptor agonist, decreased the excitability of D2 striatal projection neurons in slices, and diminished their activity in vivo during novel environment exploration. We found that misoprostol also modulates mouse behavior including by facilitating reversal learning. Our study provides powerful resources for characterizing dopamine target neurons, new information about striatal gene expression patterns and regulation. It also reveals the unforeseen role of PGE2 in the striatum as a potential neuromodulator and an attractive therapeutic target.


Asunto(s)
Dinoprostona , Misoprostol , Animales , Cuerpo Estriado/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Exones , Expresión Génica , Ratones , Misoprostol/metabolismo , Misoprostol/farmacología , ARN Mensajero/metabolismo , Receptores de Dopamina D1/metabolismo
6.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232936

RESUMEN

Antipsychotics share the common pharmacological feature of antagonizing the dopamine 2 receptor (D2R), which is abundant in the striatum and involved in both the therapeutic and side effects of this drug's class. The pharmacological blockade of striatal D2R, by disinhibiting the D2R-containing medium-sized spiny neurons (MSNs), leads to a plethora of molecular, cellular and behavioral adaptations, which are central in the action of antipsychotics. Here, we focused on the cell type-specific (D2R-MSNs) regulation of some striatal immediate early genes (IEGs), such as cFos, Arc and Zif268. Taking advantage of transgenic mouse models, pharmacological approaches and immunofluorescence analyses, we found that haloperidol-induced IEGs in the striatum required the synergistic activation of A2a (adenosine) and NMDA (glutamate) receptors. At the intracellular signaling level, we found that the PKA/DARPP-32 and mTOR pathways synergistically cooperate to control the induction of IEGs by haloperidol. By confirming and further expanding previous observations, our results provide novel insights into the regulatory mechanisms underlying the molecular/cellular action of antipsychotics in the striatum.


Asunto(s)
Antipsicóticos , Haloperidol , Adenosina/metabolismo , Animales , Antipsicóticos/metabolismo , Antipsicóticos/farmacología , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Genes Inmediatos-Precoces , Glutamatos/metabolismo , Haloperidol/farmacología , Ratones , Ratones Transgénicos , N-Metilaspartato/metabolismo , Neuronas/metabolismo , Receptores de Dopamina D1/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
7.
J Neurosci ; 40(5): 1028-1041, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31831522

RESUMEN

The nucleus accumbens (NAc) is a mesocorticolimbic structure that integrates cognitive, emotional and motor functions. Although its role in psychiatric disorders is widely acknowledged, the understanding of its circuitry is not complete. Here, we combined optogenetic and whole-cell recordings to draw a functional portrait of excitatory disambiguated synapses onto D1 and D2 medium spiny neurons (MSNs) in the adult male mouse NAc core. Comparing synaptic properties of ventral hippocampus (vHipp), basolateral amygdala (BLA) and prefrontal cortex (PFC) inputs revealed a hierarchy of synaptic inputs that depends on the identity of the postsynaptic target MSN. Thus, the BLA is the dominant excitatory pathway onto D1 MSNs (BLA > PFC = vHipp) while PFC inputs dominate D2 MSNs (PFC > vHipp > BLA). We also tested the hypothesis that endocannabinoids endow excitatory circuits with pathway- and cell-specific plasticity. Thus, whereas CB1 receptors (CB1R) uniformly depress excitatory pathways regardless of MSNs identity, TRPV1 receptors (TRPV1R) bidirectionally control inputs onto the NAc core in a pathway-specific manner. Finally, we show that the interplay of TRPV1R/CB1R shapes plasticity at BLA-NAc synapses. Together these data shed new light on synapse and circuit specificity in the adult NAc core and illustrate how endocannabinoids contribute to pathway-specific synaptic plasticity.SIGNIFICANCE STATEMENT We examined the impact of connections from the ventral hippocampus (vHipp,) basolateral amygdala (BLA) and prefrontal cortex (PFC) onto identified medium spiny neurons (MSNs) in the adult accumbens core. We found BLA inputs were strongest at D1 MSNs while PFC inputs dominate D2 MSNs. Pathway- and cell-specific circuit control was also facilitated by endocannabinoids that endow bidirectional synaptic plasticity at identified BLA-NAc synapses. These data provide mechanistic insights on synapse and circuit specificity in the adult NAc core.


Asunto(s)
Potenciales Postsinápticos Excitadores , Neuronas/fisiología , Núcleo Accumbens/fisiología , Receptor Cannabinoide CB1/fisiología , Sinapsis/fisiología , Canales Catiónicos TRPV/fisiología , Potenciales de Acción , Animales , Complejo Nuclear Basolateral/fisiología , Endocannabinoides/fisiología , Hipocampo/fisiología , Masculino , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Núcleo Accumbens/metabolismo , Optogenética , Corteza Prefrontal/fisiología , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
8.
Addict Biol ; 26(4): e12995, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33368923

RESUMEN

Prescription stimulants, such as d-amphetamine or methylphenidate are used to treat suffering from attention-deficit hyperactivity disorder (ADHD). They potently release dopamine (DA) and norepinephrine (NE) and cause phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA1 in the striatum. Whether other brain regions are also affected remains elusive. Here, we demonstrate that d-amphetamine and methylphenidate increase phosphorylation at Ser845 (pS845-GluA1) in the membrane fraction of mouse cerebellum homogenate. We identify Bergmann glial cells as the source of pS845-GluA1 and demonstrate a requirement for intact NE release. Consequently, d-amphetamine-induced pS845-GluA1 was prevented by ß1-adenoreceptor antagonist, whereas the blockade of DA D1 receptor had no effect. Together, these results indicate that NE regulates GluA1 phosphorylation in Bergmann glial cells in response to prescription stimulants.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Cerebelo/metabolismo , Dextroanfetamina/farmacología , Metilfenidato/farmacología , Fosfotransferasas , Animales , Masculino , Ratones , Norepinefrina/metabolismo , Fosforilación , Receptores de Dopamina D1/metabolismo
9.
Nature ; 509(7501): 459-64, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24848058

RESUMEN

Nucleus accumbens neurons serve to integrate information from cortical and limbic regions to direct behaviour. Addictive drugs are proposed to hijack this system, enabling drug-associated cues to trigger relapse to drug seeking. However, the connections affected and proof of causality remain to be established. Here we use a mouse model of delayed cue-associated cocaine seeking with ex vivo electrophysiology in optogenetically delineated circuits. We find that seeking correlates with rectifying AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor transmission and a reduced AMPA/NMDA (N-methyl-D-aspartate) ratio at medial prefrontal cortex (mPFC) to nucleus accumbens shell D1-receptor medium-sized spiny neurons (D1R-MSNs). In contrast, the AMPA/NMDA ratio increases at ventral hippocampus to D1R-MSNs. Optogenetic reversal of cocaine-evoked plasticity at both inputs abolishes seeking, whereas selective reversal at mPFC or ventral hippocampus synapses impairs response discrimination or reduces response vigour during seeking, respectively. Taken together, we describe how information integration in the nucleus accumbens is commandeered by cocaine at discrete synapses to allow relapse. Our approach holds promise for identifying synaptic causalities in other behavioural disorders.


Asunto(s)
Trastornos Relacionados con Cocaína/fisiopatología , Cocaína/farmacología , Plasticidad Neuronal/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Animales , Trastornos Relacionados con Cocaína/patología , Trastornos Relacionados con Cocaína/psicología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Femenino , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Ratones , N-Metilaspartato/metabolismo , Vías Nerviosas/efectos de los fármacos , Núcleo Accumbens/citología , Núcleo Accumbens/patología , Optogenética , Corteza Prefrontal/citología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/patología , Receptores AMPA/metabolismo , Receptores de Dopamina D1/metabolismo , Recurrencia , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
10.
J Neurochem ; 151(2): 204-226, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31245856

RESUMEN

The caudal part of the striatum, also named the tail of the striatum (TS), defines a fourth striatal domain. Determining whether rewarding, aversive and salient stimuli regulate the activity of striatal spiny projections neurons (SPNs) of the TS is therefore of paramount importance to understand its functions, which remain largely elusive. Taking advantage of genetically encoded biosensors (A-kinase activity reporter 3) to record protein kinase A signals and by analyzing the distribution of dopamine D1R- and D2R-SPNs in the TS, we characterized three subterritories: a D2R/A2aR-lacking, a D1R/D2R-intermingled and a D1R/D2R-SPNs-enriched area (corresponding to the amygdalostriatal transition). In addition, we provide evidence that the distribution of D1R- and D2R-SPNs in the TS is evolutionarily conserved (mouse, rat, gerbil). The in vivo analysis of extracellular signal-regulated kinase (ERK) phosphorylation in these TS subterritories in response to distinct appetitive, aversive and pharmacological stimuli revealed that SPNs of the TS are not recruited by stimuli triggering innate aversive responses, fasting, satiety, or palatable signals whereas a reduction in ERK phosphorylation occurred following learned avoidance. In contrast, D1R-SPNs of the intermingled and D2R/A2aR-lacking areas were strongly activated by both D1R agonists and psychostimulant drugs (d-amphetamine, cocaine, 3,4-methyl enedioxy methamphetamine, or methylphenidate), but not by hallucinogens. Finally, a similar pattern of ERK activation was observed by blocking selectively dopamine reuptake. Together, our results reveal that the caudal TS might participate in the processing of specific reward signals and discrete aversive stimuli. Cover Image for this issue: doi: 10.1111/jnc.14526. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.


Asunto(s)
Reacción de Prevención/fisiología , Cuerpo Estriado/enzimología , Sistema de Señalización de MAP Quinasas/fisiología , Recompensa , Estimulación Acústica/efectos adversos , Animales , Reacción de Prevención/efectos de los fármacos , Cocaína/farmacología , Cuerpo Estriado/efectos de los fármacos , Dopamina/farmacología , Inhibidores de Captación de Dopamina/farmacología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Gerbillinae , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley
11.
Brain Behav Immun ; 81: 399-409, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31251974

RESUMEN

Monoacylglycerol lipase (MAGL) is the main enzyme implicated in the degradation of the most abundant endocannabinoid in the brain, 2-arachidonoylglycerol (2-AG), producing arachidonic acid (AA) and glycerol. MAGL pharmacological inhibition with JZL184 or genetic deletion results in an exacerbated 2-AG signaling and reduced synthesis of prostaglandins (PGs), due to the reduced AA precursor levels. We found that acute JZL184 administration, previously described to exert anti-inflammatory effects, and MAGL knockout (KO) mice display cerebellar, but not hippocampal, microglial reactivity, accompanied with increased expression of the mRNA levels of neuroinflammatory markers, such as cyclooxygenase-2 (COX-2). Notably, this neuroinflammatory phenotype correlated with relevant motor coordination impairment in the beam-walking and the footprint tests. Treatment with the COX-2 inhibitor NS398 during 5 days prevented the deficits in cerebellar function and the cerebellar microglia reactivity in MAGL KO, without affecting hippocampal reactivity. Altogether, this study reveals the brain region-specific response to MAGL inhibition, with an important role of COX-2 in the cerebellar deficits associated, which should be taken into account for the use of MAGL inhibitors as anti-inflammatory drugs.


Asunto(s)
Benzodioxoles/farmacología , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Ciclooxigenasa 2/metabolismo , Monoacilglicerol Lipasas/antagonistas & inhibidores , Actividad Motora/efectos de los fármacos , Piperidinas/farmacología , Amidohidrolasas/antagonistas & inhibidores , Animales , Ácido Araquidónico/metabolismo , Ácidos Araquidónicos/metabolismo , Cerebelo/patología , Inhibidores de la Ciclooxigenasa/farmacología , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monoacilglicerol Lipasas/metabolismo , Neuroinmunomodulación/efectos de los fármacos , Neuroinmunomodulación/fisiología , Nitrobencenos/farmacología , Transducción de Señal , Sulfonamidas/farmacología
12.
Addict Biol ; 24(3): 364-375, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29318708

RESUMEN

Conditioned place preference (CPP) is widely used for evaluating the rewarding effects of drugs. Like other memories, CPP is proposed to undergo reconsolidation during which it is unstable and sensitive to pharmacological inhibition. Previous studies have shown that cocaine CPP can be apparently erased by extracellular signal-regulated kinase (ERK) pathway inhibition during cocaine reconditioning (re-exposure to the drug-paired environment in the presence of the drug). Here, we show that blockade of D1 receptors during reconditioning prevented ERK activation and induced a loss of CPP. However, we also unexpectedly observed a CPP disappearance in mice that underwent testing and reconditioning with cocaine alone, specifically in strong conditioning conditions. The loss was due to the intermediate test. CPP was not recovered with reconditioning or priming in the short term, but it spontaneously reappeared after a month. When we challenged the D1 antagonist-mediated erasure, we observed that both a high dose of cocaine and a first CPP test were required for this effect. Our results also suggest a balance between D1-dependent ERK pathway activation and an A2a-dependent mechanism in D2 striatal neurons in controlling CPP expression. Our data reveal that, paradoxically, a simple CPP test can induce a complete (but transient) loss of place preference following strong but not weak cocaine conditioning. This study emphasizes the complex nature of CPP memory and the importance of multiple parameters that must be taken into consideration when investigating reconsolidation.


Asunto(s)
Cocaína/farmacología , Condicionamiento Psicológico/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Animales , Benzazepinas/farmacología , Cuerpo Estriado/metabolismo , Relación Dosis-Respuesta a Droga , Técnica del Anticuerpo Fluorescente , Masculino , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neuronas/metabolismo , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D2/efectos de los fármacos , Recompensa
13.
Proc Natl Acad Sci U S A ; 113(10): E1382-91, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26903620

RESUMEN

Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions.


Asunto(s)
Aprendizaje por Asociación/fisiología , Corteza Cerebral/fisiología , Plasticidad Neuronal/fisiología , Receptor de Serotonina 5-HT2A/fisiología , Tálamo/fisiología , Animales , Western Blotting , Corteza Cerebral/metabolismo , Fenómenos Electrofisiológicos , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Plasticidad Neuronal/genética , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Proteína Quinasa C/metabolismo , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Tálamo/metabolismo , Fosfolipasas de Tipo C/metabolismo
14.
J Neurosci ; 37(43): 10372-10388, 2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-28935766

RESUMEN

Addiction is a maladaptive pattern of behavior following repeated use of reinforcing drugs in predisposed individuals, leading to lifelong changes. Common among these changes are alterations of neurons releasing dopamine in the ventral and dorsal territories of the striatum. The serotonin 5-HT2B receptor has been involved in various behaviors, including impulsivity, response to antidepressants, and response to psychostimulants, pointing toward putative interactions with the dopamine system. Despite these findings, it remains unknown whether 5-HT2B receptors directly modulate dopaminergic activity and the possible mechanisms involved. To answer these questions, we investigated the contribution of 5-HT2B receptors to cocaine-dependent behavioral responses. Male mice permanently lacking 5-HT2B receptors, even restricted to dopamine neurons, developed heightened cocaine-induced locomotor responses. Retrograde tracing combined with single-cell mRNA amplification indicated that 5-HT2B receptors are expressed by mesolimbic dopamine neurons. In vivo and ex vivo electrophysiological recordings showed that 5-HT2B-receptor inactivation in dopamine neurons affects their neuronal activity and increases AMPA-mediated over NMDA-mediated excitatory synaptic currents. These changes are associated with lower ventral striatum dopamine activity and blunted cocaine self-administration. These data identify the 5-HT2B receptor as a pharmacological intermediate and provide mechanistic insight into attenuated dopamine tone following exposure to drugs of abuse.SIGNIFICANCE STATEMENT Here we report that mice lacking 5-HT2B receptors totally or exclusively in dopamine neurons exhibit heightened cocaine-induced locomotor responses. Despite the sensitized state of these mice, we found that associated changes include lower ventral striatum dopamine activity and lower cocaine operant self-administration. We described the selective expression of 5-HT2B receptors in a subpopulation of dopamine neurons sending axons to the ventral striatum. Increased bursting in vivo properties of these dopamine neurons and a concomitant increase in AMPA synaptic transmission to ex vivo dopamine neurons were found in mice lacking 5-HT2B receptors. These data support the idea that the chronic 5-HT2B-receptor inhibition makes mice behave like animals already exposed to cocaine with higher cocaine-induced locomotion associated with changes in dopamine neuron reactivity.


Asunto(s)
Cocaína/administración & dosificación , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Núcleo Accumbens/metabolismo , Receptor de Serotonina 5-HT2B/biosíntesis , Transducción de Señal/fisiología , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Femenino , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Núcleo Accumbens/efectos de los fármacos , Proyectos Piloto , Distribución Aleatoria , Receptor de Serotonina 5-HT2B/deficiencia , Autoadministración , Transducción de Señal/efectos de los fármacos
15.
J Biol Chem ; 292(4): 1462-1476, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-27998980

RESUMEN

The interaction of glutamate and dopamine in the striatum is heavily dependent on signaling pathways that converge on the regulatory protein DARPP-32. The efficacy of dopamine/D1 receptor/PKA signaling is regulated by DARPP-32 phosphorylated at Thr-34 (the PKA site), a process that inhibits protein phosphatase 1 (PP1) and potentiates PKA action. Activation of dopamine/D1 receptor/PKA signaling also leads to dephosphorylation of DARPP-32 at Ser-97 (the CK2 site), leading to localization of phospho-Thr-34 DARPP-32 in the nucleus where it also inhibits PP1. In this study the role of glutamate in the regulation of DARPP-32 phosphorylation at four major sites was further investigated. Experiments using striatal slices revealed that glutamate decreased the phosphorylation states of DARPP-32 at Ser-97 as well as Thr-34, Thr-75, and Ser-130 by activating NMDA or AMPA receptors in both direct and indirect pathway striatal neurons. The effect of glutamate in decreasing Ser-97 phosphorylation was mediated by activation of PP2A. In vitro phosphatase assays indicated that the PP2A/PR72 heterotrimer complex was likely responsible for glutamate/Ca2+-regulated dephosphorylation of DARPP-32 at Ser-97. As a consequence of Ser-97 dephosphorylation, glutamate induced the nuclear localization in cultured striatal neurons of dephospho-Thr-34/dephospho-Ser-97 DARPP-32. It also reduced PKA-dependent DARPP-32 signaling in slices and in vivo Taken together, the results suggest that by inducing dephosphorylation of DARPP-32 at Ser-97 and altering its cytonuclear distribution, glutamate may counteract dopamine/D1 receptor/PKA signaling at multiple cellular levels.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Dopamina/metabolismo , Receptores de Dopamina D1/metabolismo , Transducción de Señal/fisiología , Animales , Núcleo Celular/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Dopamina/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Masculino , Ratones , Fosforilación/fisiología , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Receptores de Dopamina D1/genética
16.
Addict Biol ; 23(2): 735-749, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28872733

RESUMEN

High-palatable and caloric foods are widely overconsumed due to hedonic mechanisms that prevail over caloric necessities leading to overeating and overweight. The nucleus accumbens (NAc) is a key brain area modulating the reinforcing effects of palatable foods and is crucially involved in the development of eating disorders. We describe that prolonged exposure to high-caloric chocolate cafeteria diet leads to overeating and overweight in mice. NAc functionality was altered in these mice, presenting structural plasticity modifications in medium spiny neurons, increased expression of neuroinflammatory factors and activated microglia, and abnormal responses after amphetamine-induced hyperlocomotion. Chronic inactivation of microglia normalized these neurobiological and behavioural alterations exclusively in mice exposed to cafeteria diet. Our data suggest that prolonged exposure to cafeteria diet produces neuroplastic and functional changes in the NAc that can modify feeding behaviour. Microglia activation and neuroinflammation play an important role in the development of these neurobiological alterations.


Asunto(s)
Dieta , Conducta Alimentaria/fisiología , Hiperfagia/inmunología , Microglía/inmunología , Núcleo Accumbens/inmunología , Sobrepeso/inmunología , Anfetamina/farmacología , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Chocolate , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/inmunología , Cuerpo Estriado/patología , Citocinas/efectos de los fármacos , Citocinas/inmunología , Espinas Dendríticas/patología , Conducta Alimentaria/efectos de los fármacos , Inflamación , Locomoción/efectos de los fármacos , Ratones , Microscopía Confocal , Minociclina/farmacología , Plasticidad Neuronal , Neuronas/patología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/patología , Células Piramidales/patología
17.
J Neurosci ; 35(10): 4113-30, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25762659

RESUMEN

Ribosomal protein S6 (rpS6), a component of the 40S ribosomal subunit, is phosphorylated on several residues in response to numerous stimuli. Although commonly used as a marker for neuronal activity, its upstream mechanisms of regulation are poorly studied and its role in protein synthesis remains largely debated. Here, we demonstrate that the psychostimulant d-amphetamine (d-amph) markedly increases rpS6 phosphorylation at Ser235/236 sites in both crude and synaptoneurosomal preparations of the mouse striatum. This effect occurs selectively in D1R-expressing medium-sized spiny neurons (MSNs) and requires the cAMP/PKA/DARPP-32/PP-1 cascade, whereas it is independent of mTORC1/p70S6K, PKC, and ERK signaling. By developing a novel assay to label nascent peptidic chains, we show that the rpS6 phosphorylation induced in striatonigral MSNs by d-amph, as well as in striatopallidal MSNs by the antipsychotic haloperidol or in both subtypes by papaverine, is not correlated with the translation of global or 5' terminal oligopyrimidine tract mRNAs. Together, these results provide novel mechanistic insights into the in vivo regulation of the post-translational modification of rpS6 in the striatum and point out the lack of a relationship between PKA-dependent rpS6 phosphorylation and translation efficiency.


Asunto(s)
Cuerpo Estriado/citología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Vías Nerviosas/fisiología , Neuronas/metabolismo , Proteína S6 Ribosómica/metabolismo , Sustancia Negra/citología , Animales , Cuerpo Estriado/efectos de los fármacos , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Harringtoninas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Fosforilación/efectos de los fármacos , Fosforilación/genética , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Puromicina/farmacología , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sustancia Negra/efectos de los fármacos , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo
18.
Neurobiol Dis ; 87: 69-79, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26711621

RESUMEN

Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons. The gold standard therapy relies on dopamine (DA) replacement by the administration of levodopa (l-DOPA). However, with time l-DOPA treatment induces severe motor side effects characterized by abnormal and involuntary movements, or dyskinesia. Although earlier studies point to a role of striatal cholinergic interneurons, also known as striatal tonically active neurons (TANs), in l-DOPA-induced dyskinesia (LID), the underlying mechanisms remain to be fully characterized. Here, we find that DA depletion is accompanied by increased expression of choline acetyltransferase (ChAT), the vesicular acetylcholine transporter (VAChT) as well as the atypical vesicular glutamate transporter type 3 (VGLUT3). TANs number and soma size are not changed. In dyskinetic mice, the VAChT levels remain high whereas the expression of VGLUT3 decreases. LID is attenuated in VGLUT3-deficient mice but not in mice bearing selective inactivation of VAChT in TANs. Finally, the absence of VGLUT3 is accompanied by a reduction of l-DOPA-induced phosphorylation of ERK1/2, ribosomal subunit (rpS6) and GluA1. Our results reveal that VGLUT3 plays an important role in the development of LID and should be considered as a potential and promising therapeutic target for prevention of LID.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antiparkinsonianos/toxicidad , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/toxicidad , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Recuento de Células , Tamaño de la Célula , Colina O-Acetiltransferasa/metabolismo , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuronas/metabolismo , Neuronas/patología , Oxidopamina , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Fosforilación/efectos de los fármacos , Receptores AMPA/metabolismo , Proteína S6 Ribosómica/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
19.
Hippocampus ; 25(7): 858-75, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25545461

RESUMEN

Increasing evidences suggest that dopamine facilitates the encoding of novel memories by the hippocampus. However, the role of dopamine D2 receptors (D2R) in such regulations remains elusive due to the lack of the precise identification of hippocampal D2R-expressing cells. To address this issue, mice expressing the ribosomal protein Rpl22 tagged with the hemagglutinin (HA) epitope were crossed with Drd2-Cre mice allowing the selective expression of HA in D2R-containing cells (Drd2-Cre:RiboTag mice). This new transgenic model revealed a more widespread pattern of D2R-expressing cells identified by HA immunoreactivity than the one initially reported in Drd2-EGFP mice, in which the hilar mossy cells were the main neuronal population detectable. In Drd2-Cre:RiboTag mice, scattered HA/GAD67-positive neurons were detected throughout the CA1/CA3 subfields, being preferentially localized in stratum oriens and stratum lacunosum-moleculare. At the cellular level, HA-labeled cells located in CA1/CA3 subfields co-localized with calcium-binding proteins (parvalbumin, calbindin, and calretinin), neuropeptides (neuropeptide Y, somatostatin), and other markers (neuronal nitric oxide synthase, mGluR1α, reelin, coupTFII, and potassium channel-interacting protein 1). These results suggest that in addition to the glutamatergic hilar mossy cells, D2R-expressing cells constitute a subpopulation of GABAergic hippocampal interneurons.


Asunto(s)
Regulación de la Expresión Génica/genética , Hipocampo/citología , Neuronas/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Calbindina 2/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Channelrhodopsins , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores de Dopamina D2/genética , Proteína Reelina , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
20.
Hippocampus ; 24(12): 1466-81, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25044816

RESUMEN

The acute activation of the dopamine D1-like receptors (D1R) is involved in a plethora of functions ranging from increased locomotor activity to the facilitation of consolidation, storage, and retrieval of memories. Although much less characterized, epileptiform activities, usually triggered by disruption of the glutamate and GABA balance, have also been reported to involve the dopaminergic transmission. Using a combination of biochemical, immunohistochemical, electrophysiological, and behavioral approaches we have investigated the consequences of repeated stimulation of D1R using the selective D1R-like agonist SKF81297. Here, we report that repeated systemic administration of SKF81297 induces kindled seizures in mice. These seizure episodes parallel the hyperactivation of the mTOR signaling in the hippocampus, leading to disrupted long-term potentiation (LTP) in the dentate gyrus (DG) and altered recognition memories. The mTOR inhibitor rapamycin delays the development of SKF81297-induced kindled seizures, and rescues LTP in the DG and object recognition. Our results show that repeated stimulation of D1R is sufficient to induce generalized seizures leading to the overactivation of mTOR signaling, disrupted hippocampal plasticity, and impaired long-term recognition memories. This work highlights the interest of mTOR inhibitors as therapeutic strategies to reverse plasticity and cognitive deficits.


Asunto(s)
Giro Dentado/fisiopatología , Trastornos de la Memoria/fisiopatología , Receptores de Dopamina D1/metabolismo , Convulsiones/fisiopatología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Benzazepinas/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Giro Dentado/efectos de los fármacos , Agonistas de Dopamina/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Fármacos Neuroprotectores/farmacología , Receptores de Dopamina D1/agonistas , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA