Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Microbiol ; 17(1): 206, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28950879

RESUMEN

BACKGROUND: Anthrax is a globally distributed disease affecting primarily herbivorous mammals. It is caused by the soil-dwelling and spore-forming bacterium Bacillus anthracis. The dormant B. anthracis spores become vegetative after ingestion by grazing mammals. After killing the host, B. anthracis cells return to the soil where they sporulate, completing the lifecycle of the bacterium. Here we present the first study describing temporal microbial soil community changes in Etosha National Park, Namibia, after decomposition of two plains zebra (Equus quagga) anthrax carcasses. To circumvent state-associated-challenges (i.e. vegetative cells/spores) we monitored B. anthracis throughout the period using cultivation, qPCR and shotgun metagenomic sequencing. RESULTS: The combined results suggest that abundance estimation of spore-forming bacteria in their natural habitat by DNA-based approaches alone is insufficient due to poor recovery of DNA from spores. However, our combined approached allowed us to follow B. anthracis population dynamics (vegetative cells and spores) in the soil, along with closely related organisms from the B. cereus group, despite their high sequence similarity. Vegetative B. anthracis abundance peaked early in the time-series and then dropped when cells either sporulated or died. The time-series revealed that after carcass deposition, the typical semi-arid soil community (e.g. Frankiales and Rhizobiales species) becomes temporarily dominated by the orders Bacillales and Pseudomonadales, known to contain plant growth-promoting species. CONCLUSION: Our work indicates that complementing DNA based approaches with cultivation may give a more complete picture of the ecology of spore forming pathogens. Furthermore, the results suggests that the increased vegetation biomass production found at carcass sites is due to both added nutrients and the proliferation of microbial taxa that can be beneficial for plant growth. Thus, future B. anthracis transmission events at carcass sites may be indirectly facilitated by the recruitment of plant-beneficial bacteria.


Asunto(s)
Carbunco/microbiología , Carbunco/veterinaria , Bacillus anthracis/fisiología , Microbiología del Suelo , Animales , Bacillus anthracis/clasificación , Bacillus anthracis/genética , Bacillus anthracis/aislamiento & purificación , Biodiversidad , Cadáver , ADN Bacteriano/análisis , Ecología , Equidae/microbiología , Genes de ARNr , Metagenómica , Namibia , Suelo , Esporas Bacterianas/genética
2.
Genome Announc ; 4(4)2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27563043

RESUMEN

Bacillus anthracis strains K1 and K2 were isolated from two plains zebra anthrax carcasses in Etosha National Park, Namibia. These are draft genomes obtained by Illumina MiSeq sequencing of isolates collected from culture of blood-soaked soil from each carcass.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA