Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 289(33): 23256-23263, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24975416

RESUMEN

The aspartate in the prototypical integrin-binding motif Arg-Gly-Asp binds the integrin ßA domain of the ß-subunit through a divalent cation at the metal ion-dependent adhesion site (MIDAS). An auxiliary metal ion at a ligand-associated metal ion-binding site (LIMBS) stabilizes the metal ion at MIDAS. LIMBS contacts distinct residues in the α-subunits of the two ß3 integrins αIIbß3 and αVß3, but a potential role of this interaction on stability of the metal ion at LIMBS in ß3 integrins has not been explored. Equilibrium molecular dynamics simulations of fully hydrated ß3 integrin ectodomains revealed strikingly different conformations of LIMBS in unliganded αIIbß3 versus αVß3, the result of stronger interactions of LIMBS with αV, which reduce stability of the LIMBS metal ion in αVß3. Replacing the αIIb-LIMBS interface residue Phe(191) in αIIb (equivalent to Trp(179) in αV) with Trp strengthened this interface and destabilized the metal ion at LIMBS in αIIbß3; a Trp(179) to Phe mutation in αV produced the opposite but weaker effect. Consistently, an F191/W substitution in cellular αIIbß3 and a W179/F substitution in αVß3 reduced and increased, respectively, the apparent affinity of Mn(2+) to the integrin. These findings offer an explanation for the variable occupancy of the metal ion at LIMBS in αVß3 structures in the absence of ligand and provide new insights into the mechanisms of integrin regulation.


Asunto(s)
Integrina alfaVbeta3/química , Integrina beta3/química , Manganeso/química , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química , Secuencias de Aminoácidos , Sitios de Unión , Cationes Bivalentes/química , Humanos , Integrina alfaVbeta3/genética , Integrina beta3/genética , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética
2.
J Biol Chem ; 289(20): 13801-9, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24692540

RESUMEN

The function-blocking, non-RGD-containing, and primate-specific mouse monoclonal antibody 17E6 binds the αV subfamily of integrins. 17E6 is currently in phase II clinical trials for treating cancer. To elucidate the structural basis of recognition and the molecular mechanism of inhibition, we crystallized αVß3 ectodomain in complex with the Fab fragment of 17E6. Protein crystals grew in presence of the activating cation Mn(2+). The integrin in the complex and in solution assumed the genuflected conformation. 17E6 Fab bound exclusively to the Propeller domain of the αV subunit. At the core of αV-Fab interface were interactions involving Propeller residues Lys-203 and Gln-145, with the latter accounting for primate specificity. The Propeller residue Asp-150, which normally coordinates Arg of the ligand Arg-Gly-Asp motif, formed contacts with Arg-54 of the Fab that were expected to reduce soluble FN10 binding to cellular αVß3 complexed with 17E6. This was confirmed in direct binding studies, suggesting that 17E6 is an allosteric inhibitor of αV integrins.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Fragmentos Fab de Inmunoglobulinas/metabolismo , Integrina alfaV/química , Integrina alfaV/inmunología , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Cristalografía por Rayos X , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Integrina alfaVbeta3/inmunología , Manganeso/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Primates , Estructura Terciaria de Proteína , Especificidad de la Especie
3.
Structure ; 27(9): 1443-1451.e6, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31353240

RESUMEN

Targeting both integrins αVß3 and α5ß1 simultaneously appears to be more effective in cancer therapy than targeting each one alone. The structural requirements for bispecific binding of ligand to integrins have not been fully elucidated. RGD-containing knottin 2.5F binds selectively to αVß3 and α5ß1, whereas knottin 2.5D is αVß3 specific. To elucidate the structural basis of this selectivity, we determined the structures of 2.5F and 2.5D as apo proteins and in complex with αVß3, and compared their interactions with integrins using molecular dynamics simulations. These studies show that 2.5D engages αVß3 by an induced fit, but conformational selection of a flexible RGD loop accounts for high-affinity selective binding of 2.5F to both integrins. The contrasting binding of the highly flexible low-affinity linear RGD peptides to multiple integrins suggests that a "Goldilocks zone" of conformational flexibility of the RGD loop in 2.5F underlies its selective binding promiscuity to integrins.


Asunto(s)
Miniproteínas Nodales de Cistina/metabolismo , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Receptores de Vitronectina/química , Receptores de Vitronectina/metabolismo , Sitios de Unión , Humanos , Integrina alfaVbeta3/genética , Células K562 , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica , Receptores de Vitronectina/genética
4.
Nat Struct Mol Biol ; 21(4): 383-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24658351

RESUMEN

Integrins are important therapeutic targets. However, current RGD-based anti-integrin drugs are also partial agonists, inducing conformational changes that trigger potentially fatal immune reactions and paradoxical cell adhesion. Here we describe the first crystal structure of αVß3 bound to a physiologic ligand, the tenth type III RGD domain of wild-type fibronectin (wtFN10), or to a high-affinity mutant (hFN10) shown here to act as a pure antagonist. Comparison of these structures revealed a central π-π interaction between Trp1496 in the RGD-containing loop of hFN10 and Tyr122 of the ß3 subunit that blocked conformational changes triggered by wtFN10 and trapped hFN10-bound αVß3 in an inactive conformation. Removing the Trp1496 or Tyr122 side chains or reorienting Trp1496 away from Tyr122 converted hFN10 into a partial agonist. These findings offer new insights into the mechanism of integrin activation and a basis for the design of RGD-based pure antagonists.


Asunto(s)
Fibronectinas/química , Integrina alfaVbeta3/química , Sitios de Unión , Adhesión Celular , Cristalografía por Rayos X , Fibronectinas/metabolismo , Humanos , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/fisiología , Modelos Moleculares , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA