Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Water Health ; 21(9): 1242-1256, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37756192

RESUMEN

SARS-CoV-2 wastewater surveillance (WWS) at wastewater treatment plants (WWTPs) can reveal sewered community COVID-19 prevalence. For unsewered areas using septic tank systems (STSs) or holding tanks, how to conduct WWS remains unexplored. Here, two large STSs serving Zuma Beach (Malibu, CA) were studied. Supernatant and sludge SARS-CoV-2 concentrations from the directly-sampled STSs parameterized a dynamic solid-liquid separation, mass balance-based model for estimating the infection rate of users. Pumped septage before hauling and upon WWTP disposal was also sampled and assessed. Most (96%) STS sludge samples contained SARS-CoV-2 N1 and N2 genes, with concentrations exceeding the supernatant and increasing with depth while correlating with total suspended solids (TSS). The trucked septage contained N1 and N2 genes which decayed (coefficients: 0.09-0.29 h-1) but remained detectable. Over approximately 5 months starting in December 2020, modeled COVID-19 prevalence estimations among users ranged from 8 to 18%, mirroring a larger metropolitan area for the first 2 months. The approaches herein can inform public health intervention and augment conventional WWS in that: (1) user infection rates for communal holding tanks are estimable and (2) pumped and hauled septage can be assayed to infer where disease is spreading in unsewered areas.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Aguas del Alcantarillado , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
2.
J Appl Microbiol ; 133(2): 232-240, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35429105

RESUMEN

AIMS: The DNA marker HF183 is a partial 16S rRNA gene sequence highly specific to human-associated Bacteroides including Bacteroides dorei. While HF183 is used to assess human faecal contamination in aquatic environments worldwide, little is known about the existence of HF183 and B. dorei in human microbiomes outside of the human gastrointestinal tract and faeces. METHODS AND RESULTS: Previously published human skin and urine microbiome data sets from five independent human body skin studies, the Human Microbiome Project (HMP) and three independent human urine studies were analysed. The HF183 gene sequence was detected in all skin data sets, with the ratios of positive samples ranging from 0.5% to 36.3%. Popliteal fossa (knee), volar forearm and inguinal (groin) creases were identified as hot spots. HF183 was detected in two of three urine data sets, with ratios of positive samples ranging from 0% to 37.5%. All HF183-containing sequences from these data sets were classified as associated with B. dorei. CONCLUSIONS: HF183 is widespread on human skin and present in urine. SIGNIFICANCE AND IMPACT OF STUDY: Skin and urine microbiomes could be sources of HF183 to environmental waters. Such non-faecal sources of HF183 might explain low concentrations of HF183 in recreational waters when swimmers are present.


Asunto(s)
Aguas del Alcantarillado , Microbiología del Agua , Monitoreo del Ambiente/métodos , Heces , Marcadores Genéticos , Humanos , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 16S/genética
3.
Environ Sci Technol ; 55(13): 9199-9208, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34106689

RESUMEN

In urban areas, untreated stormwater runoff can pollute downstream surface waters. To intercept and treat runoff, low-impact or "green infrastructure" approaches such as using biofilters are adopted. Yet, actual biofilter pollutant removal is poorly understood; removal is often studied in laboratory columns, with variable removal of viable and culturable microbial cell numbers including pathogens. Here, to assess bacterial pollutant removal in full-scale planted biofilters, stormwater was applied, unspiked or spiked with untreated sewage, in simulated storm events under transient flow conditions, during which biofilter influents versus effluents were compared. Based on microbial biomass, sequences of bacterial community genes encoding 16S rRNA, and gene copies of the human fecal marker HF183 and of the Enterococcus spp. marker Entero1A, removal of bacterial pollutants in biofilters was limited. Dominant bacterial taxa were similar for influent versus effluent aqueous samples within each inflow treatment of either spiked or unspiked stormwater. Bacterial pollutants in soil were gradually washed out, albeit incompletely, during simulated storm flushing events. In post-storm biofilter soil cores, retained influent bacteria were concentrated in the top layers (0-10 cm), indicating that the removal of bacterial pollutants was spatially limited to surface soils. To the extent that plant-associated processes are responsible for this spatial pattern, treatment performance might be enhanced by biofilter designs that maximize influent contact with the rhizosphere.


Asunto(s)
Filtración , Purificación del Agua , Bacterias/genética , Humanos , ARN Ribosómico 16S/genética , Lluvia , Suelo
4.
Environ Sci Technol ; 50(10): 5068-76, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27119980

RESUMEN

The decay of sewage-sourced Escherichia coli and enterococci was measured at multiple depths in a freshwater marsh, a brackish water lagoon, and a marine site, all located in California. The marine site had very clear water, while the waters from the marsh and lagoon contained colored dissolved organic matter that not only blocked light but also produced reactive oxygen species. First order decay rate constants of both enterococci and E. coli were between 1 and 2 d(-1) under low light conditions and as high as 6 d(-1) under high light conditions. First order decay rate constants were well correlated to the daily average UVB light intensity corrected for light screening incorporating water absorbance and depth, suggesting endogenous photoinactivation is a major pathway for bacterial decay. Additional laboratory experiments demonstrated the presence of colored dissolved organic matter in marsh water enhanced photoinactivation of a laboratory strain of Enterococcus faecalis, but depressed photoinactivation of sewage-sourced enterococci and E. coli after correcting for UVB light screening, suggesting that although the exogenous indirect photoinactivation mechanism may be active against Ent. faecalis, it is not for the sewage-source organisms. A simple linear regression model based on UVB light intensity appears to be a useful tool for predicting inactivation rate constants in natural waters of any depth and absorbance.


Asunto(s)
Enterococcus , Escherichia coli , Luz Solar , Agua , Microbiología del Agua
5.
Environ Sci Technol ; 48(16): 9043-52, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25055204

RESUMEN

Elevated levels of fecal indicator bacteria (FIB), including Escherichia coli and enterococci, trigger coastal beach advisories and signal public health risks. Solving FIB pollution in suburban coastal watersheds is challenging, as there are many potential sources. The Arroyo Burro watershed in Santa Barbara, CA is an example, with its popular, but chronically FIB-contaminated beach. To address, a microbial source tracking study was performed. Surface waters were sampled over 2 years, FIB were quantified, and DNA was analyzed for host-associated fecal markers. Surf zone FIB were only elevated when the coastal lagoon was discharging. Among the fecal sources into the lagoon, including upstream human sources and coastal birds, canines were the most important. Canine sources included input via upstream creek water, which decreased after creek-side residences were educated about proper pet waste disposal, and direct inputs to the lagoon and surf zone, where dog waste could have been tidally exchanged with the lagoon. Based on this study, canine waste can be an influential, yet controllable, fecal source to suburban coastal beaches.


Asunto(s)
Enterococcus/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Heces/microbiología , Microbiología del Agua , Contaminantes del Agua/aislamiento & purificación , Animales , Playas , Aves , California , ADN/análisis , Perros , Monitoreo del Ambiente , Heces/química , Humanos
6.
Environ Sci Technol ; 48(24): 14712-20, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25409530

RESUMEN

Manufactured nanomaterials (MNMs) are increasingly incorporated into consumer products that are disposed into sewage. In wastewater treatment, MNMs adsorb to activated sludge biomass where they may impact biological wastewater treatment performance, including nutrient removal. Here, we studied MNM effects on bacterial polyhydroxyalkanoate (PHA), specifically polyhydroxybutyrate (PHB), biosynthesis because of its importance to enhanced biological phosphorus (P) removal (EBPR). Activated sludge was sampled from an anoxic selector of a municipal wastewater treatment plant (WWTP), and PHB-containing bacteria were concentrated by density gradient centrifugation. After starvation to decrease intracellular PHB stores, bacteria were nutritionally augmented to promote PHB biosynthesis while being exposed to either MNMs (TiO2 or Ag) or to Ag salts (each at a concentration of 5 mg L(-1)). Cellular PHB concentration and PhyloChip community composition were analyzed. The final bacterial community composition differed from activated sludge, demonstrating that laboratory enrichment was selective. Still, PHB was synthesized to near-activated sludge levels. Ag salts altered final bacterial communities, although MNMs did not. PHB biosynthesis was diminished with Ag (salt or MNMs), indicating the potential for Ag-MNMs to physiologically impact EBPR through the effects of dissolved Ag ions on PHB producers.


Asunto(s)
Bacterias/metabolismo , Nanopartículas , Poliésteres/metabolismo , Aguas del Alcantarillado/microbiología , Plata/farmacología , Titanio/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Biomasa , Consorcios Microbianos/efectos de los fármacos , Consorcios Microbianos/genética , ARN Ribosómico 16S , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
7.
Environ Sci Technol ; 48(22): 13489-96, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25354168

RESUMEN

Engineered nanoparticles (ENPs) are entering agricultural soils through land application of nanocontaining biosolids and agrochemicals. The potential adverse effects of ENPs have been studied on food crops and soil bacterial communities separately; however, how ENPs will affect the interacting plant-soil system remains unknown. To address this, we assessed ENP effects on soil microbial communities in soybean-planted, versus unplanted, mesocosms exposed to different doses of nano-CeO2 (0-1.0 g kg(-1)) or nano-ZnO (0-0.5 g kg(-1)). Nano-CeO2 did not affect soil bacterial communities in unplanted soils, but 0.1 g kg(-1) nano-CeO2 altered soil bacterial communities in planted soils, indicating that plants interactively promote nano-CeO2 effects in soil, possibly due to belowground C shifts since plant growth was impacted. Nano-ZnO at 0.5 g kg(-1) significantly altered soil bacterial communities, increasing some (e.g., Rhizobium and Sphingomonas) but decreasing other (e.g., Ensifer, Rhodospirillaceae, Clostridium, and Azotobacter) operational taxonomic units (OTUs). Fewer OTUs decreased from nano-ZnO exposure in planted (41) versus unplanted (85) soils, suggesting that plants ameliorate nano-ZnO effects. Taken together, plants--potentially through their effects on belowground biogeochemistry--could either promote (i.e., for the 0.1 g kg(-1) nano-CeO2 treatment) or limit (i.e., for the 0.5 g kg(-1) nano-ZnO treatment) ENP effects on soil bacterial communities.


Asunto(s)
Bacterias/efectos de los fármacos , Cerio/farmacología , Glycine max/metabolismo , Nanopartículas del Metal/química , Microbiología del Suelo , Óxido de Zinc/efectos adversos , Óxido de Zinc/farmacología , Contaminantes del Suelo/farmacología
8.
Water Environ Res ; 86(6): 550-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25109201

RESUMEN

Human fecal contamination of surface waters and drains is difficult to diagnose. DNA-based and chemical analyses of water samples can be used to specifically quantify human waste contamination, but their expense precludes routine use. We evaluated canine scent tracking, using two dogs trained to respond to the scent of municipal wastewater, as a field approach for surveying human fecal contamination. Fecal indicator bacteria, as well as DNA-based and chemical markers of human waste, were analyzed in waters sampled from canine scent-evaluated sites (urban storm drains and creeks). In the field, the dogs responded positively (70% and 100%) at sites for which sampled waters were then confirmed as contaminated with human waste. When both dogs indicated a negative response, human waste markers were absent. Overall, canine scent tracking appears useful for prioritizing sampling sites for which DNA-based and similarly expensive assays can confirm and quantify human waste contamination.


Asunto(s)
Perros/fisiología , Heces/microbiología , Odorantes , Ingeniería Sanitaria , Aguas del Alcantarillado , Animales , Monitoreo del Ambiente , Humanos , Eliminación de Residuos Líquidos , Contaminación del Agua/análisis
9.
Mar Pollut Bull ; 199: 115929, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141586

RESUMEN

The present study, conducted at the Kendall-Frost Mission Bay Marsh Reserve in San Diego, California, aimed to assess tobacco-related pollutants in urban waters, a topic with limited prior research. Across 26 events occurring between November 2019 and February 2022, encompassing both wet and dry seasons at two outfall sites (Noyes St. and Olney St.), water and sediment samples were subjected to analysis for nicotine and cotinine levels, with Noyes St. displaying wide variation in nicotine concentrations, reaching a peak of 50.75 ng/L in water samples, whereas Olney St. recorded a peak of 1.46 ng/L. Wet seasons consistently had higher nicotine levels in water, suggesting the possibility of tobacco litter entering the reserve through stormwater runoff. Cotinine was detected in both sites in both water and sediment samples; however, these levels were considerably lower in comparison to nicotine concentrations. Limited research assesses aquatic environmental pollution from tobacco use and disposal, especially in protected areas like urban natural reserves. This study was conducted at the Kendall-Frost Mission Bay Marsh Reserve in San Diego, California, to evaluate tobacco-related pollutants in San Diego's urban waters. Twenty-six sampling events between November 2019 and February 2022, spanning wet and dry seasons at two outfall sites, were conducted. Nicotine and cotinine, a major ingredient of tobacco and its metabolite, were analyzed in the collected water and sediment samples. Nicotine concentrations differed substantially between the outfall locations (Noyes St. and Olney St.), with Noyes St. displaying wide variations, averaging at 9.31 (±13.24) ng/L with a maximum concentration of 50.75 ng/L, and Olney St. at 0.53 (±0.41) ng/L with a maximum concentration of 1.46 ng/L in water samples. In both locations, the nicotine concentrations in water samples were higher during wet seasons than dry seasons, and this pattern was more significant at Noyes St. outfall than at Olney St. outfall, which received not only stormwater runoff but also was connected to Mission Bay. Although this pattern did not directly align with sediment nicotine levels at both sites, maximum nicotine concentration in Noyes St. sediments during wet seasons was approximately 120 times higher than in Olney St. sediments. Regarding cotinine, Noyes St. outfall water averaged 3.17 ng/L (±1.88), and Olney St. water averaged 1.09 ng/L (±1.06). Similar to nicotine, the cotinine concentrations were higher in Noyes St. water and sediment compared to Olney St., but overall, the cotinine concentrations in both water and sediment were much lower than the corresponding nicotine concentrations. The study identifies urban stormwater runoff as a potential source of nicotine and cotinine pollution in a protected reserve, implicating tobacco product litter and human tobacco use as contributing factors.


Asunto(s)
Contaminantes Ambientales , Productos de Tabaco , Contaminantes Químicos del Agua , Humanos , Monitoreo del Ambiente , Nicotina/análisis , Cotinina/análisis , Urbanización , Contaminantes Ambientales/análisis , Contaminantes Químicos del Agua/análisis , Agua/análisis
10.
Environ Sci Technol ; 47(24): 14411-7, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24256577

RESUMEN

It has been reported that engineered nanoparticles (ENPs) alter soil bacterial communities, but the underlying mechanisms and environmental controls of such effects remain unknown. Besides direct toxicity, ENPs may indirectly affect soil bacteria by changing soil water availability or other properties. Alternatively, soil water or other environmental factors may mediate ENP effects on soil bacterial communities. To test, we incubated nano-TiO2-amended soils across a range of water potentials for 288 days. Following incubation, the soil water characteristics, organic matter, total carbon, total nitrogen, and respiration upon rewetting (an indicator of bioavailable organic carbon) were measured. Bacterial community shifts were characterized by terminal restriction fragment length polymorphism (T-RFLP). The endpoint soil water holding had been reported previously as not changing with this nano-TiO2 amendment; herein, we also found that some selected soil properties were unaffected by the treatments. However, we found that nano-TiO2 altered the bacterial community composition and reduced diversity. Nano-TiO2-induced community dissimilarities increased but tended to approach a plateau when soils became drier. Taken together, nano-TiO2 effects on soil bacteria appear to be a result of direct toxicity rather than indirectly through nano-TiO2 affecting soil water and organic matter pools. However, such directs effects of nano-TiO2 on soil bacterial communities are mediated by soil water.


Asunto(s)
Bacterias/efectos de los fármacos , Nanopartículas/toxicidad , Microbiología del Suelo , Titanio/toxicidad , Bacterias/genética , Carbono/farmacología , Nitrógeno/análisis , Polimorfismo de Longitud del Fragmento de Restricción , Análisis de Componente Principal , Análisis de Regresión , Suelo/química , Agua/química
11.
Environ Pollut ; 337: 122521, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37678735

RESUMEN

Municipal separate storm sewer systems (MS4s) function in urbanized areas to convey flows during both wet weather (i.e., stormwater) and dry weather (i.e., urban runoff as well as subsurface sources of flow) to receiving waters. While urban stormwater is known to contain microbial and chemical pollutants, MS4 dry weather flows, or non-stormwater discharges (NSWDs), are much less studied, although they are also known to contain pollutants, especially when these flows include raw sewage. In addition, some natural NSWDs (e.g., from groundwater infiltrating MS4 pipes) are critical for aquatic habitat protection. Thus, it is important to distinguish NSWD sources to prevent non-natural flows while retaining natural waters (i.e., groundwater). Here, MS4 dry weather flows were assessed by analyzing water samples from MS4 outfalls across multiple watersheds and water provider service areas in south Orange County, CA; potential NSWD sources including sewage, recycled water, potable water, and groundwater were sampled and analyzed for their likely contributions to overall NSWDs. Geochemical and microbiological water quality indicators, as well as bacterial communities, differed across NSWDs, yet water quality within most locations did not vary significantly diurnally or by sampling date. Meanwhile, NSWD source waters had distinctly different bacterial taxa abundances and specific bacterial genera. Shared geochemical and microbial characteristics of certain sources and outfall flows suggested the contributions of sources to outfall flows. The average proportions by sources contributing to MS4 outfalls were further estimated by SourceTracker and FEAST, respectively. The results of this study highlight the use of multiple tools when assessing chemical and microbiological water quality to predict sources of NSWDs contributing to urban MS4 flows during dry weather. This information can be used to support management actions to reduce unnatural and high risk sources of dry weather drainage while preserving natural sources important to environmental health in downstream receiving waters.


Asunto(s)
Contaminantes Ambientales , Aguas del Alcantarillado , Monitoreo del Ambiente/métodos , Tiempo (Meteorología) , Bacterias
12.
Water Res ; 221: 118781, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35759849

RESUMEN

Fecal sources to recreational surf zone waters should be identified to protect public health. While watershed origins of human and other fecal sources are often discoverable by quantitative polymerase chain reaction (qPCR) of fecal markers using spatially stratified samples, similarly assessing wastewater treatment plant (WWTP) outfall and other offshore contributions to surf zones is challenged by individual marker fate and transport. Here, bacterial communities were assessed for relatedness between all hypothesized fecal sources and surf zone waters for two urban California recreational beaches, by sequencing genes encoding 16S rRNA and analyzing data using SourceTracker and FEAST. Ambient marine bacterial communities dominated the surf zone, while fecal (human, dog, or gull) or wastewater (sewage or treated WWTP effluent) bacterial communities were present at low proportions and those from recycled water were absent. Based on the relative abundances of bacterial genera specifically associated with human feces, the abundances of HF183 in bacterial community sequences, and FEAST and SourceTracker results when benchmarked to HF183, the major sources of HF183 to surf zone waters were human feces and treated WWTP effluent. While surf zone sequence proportions from human sources (feces, sewage and treated WWTP effluent) appeared uncorrelated to previously obtained qPCR HF183 results, the proportions of human fecal and potential human pathogen sequences in surf zone waters were elevated when there were more swimmers (i.e. during weekday afternoons, holidays and busy weekends, and race events), thus confirming previously-published qPCR-based conclusions that bather shedding contributed low levels of human fecal contamination. Here, bacterial community sequencing also showed evidence that treated WWTP effluent from an offshore outfall was entering the surf zone, thereby resolving a prior uncertainty. Thus, bacterial community sequencing not only confirms qPCR HF183-based human marker detections, but further allows for confirming fecal sources for which individual marker quantification results can be equivocal.


Asunto(s)
Playas , Monitoreo del Ambiente , Heces , Aguas del Alcantarillado , Microbiología del Agua , Animales , Bacterias/genética , Charadriiformes , Perros , Monitoreo del Ambiente/métodos , Heces/microbiología , Humanos , ARN Ribosómico 16S/genética , Aguas del Alcantarillado/microbiología , Purificación del Agua
13.
Appl Environ Microbiol ; 77(17): 6258-60, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21742921

RESUMEN

The sewage-associated real-time quantitative PCR (qPCR) assays BacHum and HF183 SYBR were compared for specificity against local fecal sources. Both assays were equally sensitive to sewage, but BacHum showed substantially more false-positive results for cat, dog, gull, and raccoon feces.


Asunto(s)
Técnicas Bacteriológicas/métodos , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Heces/microbiología , Reacción en Cadena de la Polimerasa/métodos , Animales , Gatos , Charadriiformes , Perros , Reacciones Falso Positivas , Humanos , Mapaches , Sensibilidad y Especificidad
14.
Appl Environ Microbiol ; 77(2): 627-33, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21097584

RESUMEN

Monitoring microbiological water quality is important for protecting water resources and the health of swimmers. Routine monitoring relies on cultivating fecal indicator bacteria (FIB), frequently using defined substrate technology. Defined substrate technology is designed to specifically enrich for FIB, but a complete understanding of the assay microbiology requires culture-independent analysis of the enrichments. This study aimed to identify bacteria in positive wells of Colilert and Enterolert Quanti-Tray/2000 (IDEXX Laboratories) FIB assays in environmental water samples and to quantify the degree of false-positive results for samples from an urban creek by molecular methods. Pooled Escherichia coli- and Enterococcus-positive Quanti-Tray/2000 enrichments, either from urban creek dry weather flow or municipal sewage, harbored diverse bacterial populations based on 16S rRNA gene sequences and terminal restriction fragment length polymorphism analyses. Target taxa (coliforms or enterococci) and nontarget taxa (Vibrio spp., Shewanella spp., Bacteroidetes, and Clostridium spp.) were identified in pooled and individual positive Colilert and Enterolert wells based on terminal restriction fragments that were in common with those generated in silico from clone sequences. False-positive rates of between 4 and 23% occurred for the urban creek samples, based on the absence of target terminal restriction fragments in individual positive wells. This study suggests that increased selective inhibition of nontarget bacteria could improve the accuracy of the Colilert and Enterolert assays.


Asunto(s)
Técnicas Bacteriológicas/métodos , Enterobacteriaceae/aislamiento & purificación , Monitoreo del Ambiente/métodos , Heces/microbiología , Agua Dulce/microbiología , Dermatoglifia del ADN , ADN Bacteriano/química , ADN Bacteriano/genética , Enterobacteriaceae/clasificación , Enterobacteriaceae/genética , Reacciones Falso Positivas , Datos de Secuencia Molecular , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , Aguas del Alcantarillado/microbiología
15.
Microb Ecol ; 62(3): 574-83, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21617896

RESUMEN

Microbiological contamination from runoff is a human health concern in urbanized coastal environments, but the contamination sources are often unknown. This study quantified fecal indicator bacteria and compared the distributions of human-specific genetic markers and bacterial community composition during dry and wet weather in urban creeks draining two neighboring watersheds in Santa Barbara, CA. In a prior study conducted during exclusively dry weather, the creeks were contaminated with human waste as indicated by elevated numbers of the human-specific Bacteroidales marker HF183 (Sercu et al. in Environ Sci Technol 43:293-298, 2009). During the storm, fecal indicator bacterial numbers and loads increased orders of magnitude above dry weather conditions. Moreover, bacterial community composition drastically changed during rainfall and differed from dry weather flow by (1) increased bacterial diversity, (2) reduced spatial heterogeneity within and between watersheds, and (3) clone library sequences more related to terrestrial than freshwater taxa. Finally, the spatial patterns of human-associated genetic markers (HF183 and Methanobrevibacter smithii nifH gene) changed during wet weather, and the contribution of surface soils to M. smithii nifH gene detection was suspected. The increased fecal indicator bacteria numbers during wet weather were likely associated with terrestrial sources, instead of human waste sources that dominated during dry weather flow.


Asunto(s)
Bacterias/aislamiento & purificación , Ciudades , Microbiología del Agua , Calidad del Agua , Bacterias/genética , California , Recuento de Colonia Microbiana , Heces/microbiología , Agua Dulce/microbiología , Marcadores Genéticos , Humanos , Methanobrevibacter/genética , Methanobrevibacter/aislamiento & purificación , Polimorfismo de Longitud del Fragmento de Restricción , Lluvia/microbiología , Movimientos del Agua , Contaminación del Agua/análisis
16.
Environ Sci Technol ; 45(17): 7151-7, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21786744

RESUMEN

Separating storm drains and sanitary sewers is expected to control sewage pollution, for example, from combined sewer overflows, and to reduce excessive stormwater flow to wastewater treatment plants. However, sewage contamination has been found in such separated storm drain systems in urban areas during dry-weather flow. To determine whether transmission of sewage is occurring from leaking sanitary sewers directly to leaking separated storm drains, field experiments were performed in three watersheds in Santa Barbara, CA. Areas with high and low risks for sewage exfiltration into storm drains were identified, and rhodamine WT (RWT) dye pulses were added to the sanitary sewers. RWT was monitored in nearby storm drain manholes using optical probes set up for unattended continuous monitoring. Above-background RWT peaks were detected in storm drains in high-risk areas, and multiple locations of sewage contamination were found. Sewage contamination during the field studies was confirmed using the human-specific Bacteroidales HF183 and Methanobrevibacter smithii nifH DNA markers. This study is the first to provide direct evidence that leaking sanitary sewers can directly contaminate nearby leaking storm drains with untreated sewage during dry weather and suggests that chronic sanitary sewer leakage contributes to downstream fecal contamination of coastal beaches.


Asunto(s)
Aguas del Alcantarillado/análisis , Movimientos del Agua , Contaminantes Químicos del Agua/análisis , Tiempo (Meteorología) , California , Monitoreo del Ambiente/métodos , Contaminación Ambiental , Heces/microbiología , Humanos , Rodaminas/química , Aguas del Alcantarillado/microbiología , Población Urbana
17.
Environ Sci Technol ; 45(17): 7195-201, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21786742

RESUMEN

High fecal indicator bacterial (FIB) concentrations signal urban coastal water quality impairments that can threaten public health. However, FIB (total and fecal coliform plus Enterococcus sp.) concentrations are not specific to human waste, and thus, microbial source tracking (MST) is employed to assess public health risks and remediation alternatives. Currently, water quality diagnosis requires several simultaneous MST assays. Relatively unexplored is a community analysis approach for MST where the overall microbial community composition is compared, through multivariate analysis, to link sources and sinks of microbial pollution. In this research, an urban coastal creek and drain sampling transect, previously diagnosed as human-waste-contaminated, were evaluated for bacterial community composition relative to fecal sources; a laboratory spiking study was also performed to assess method sensitivity and specificity. Multivariate statistical analysis of community profiles clearly distinguished different fecal sources, indicated a high sensitivity for sewage spikes, and confirmed creek contamination sources. This work demonstrates that molecular microbial community analysis combined with appropriate multivariate statistical analyses is an effective addition to the MST tool box.


Asunto(s)
Heces/microbiología , Ríos/microbiología , Aguas del Alcantarillado/microbiología , Microbiología del Agua , Contaminación del Agua/análisis , Animales , Bacterias/genética , California , Monitoreo del Ambiente/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Análisis Multivariante , Océanos y Mares , Polimorfismo de Longitud del Fragmento de Restricción , Salud Pública/métodos , Aguas del Alcantarillado/análisis , Calidad del Agua , Abastecimiento de Agua/análisis
18.
Front Microbiol ; 12: 673190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248883

RESUMEN

Microbial source tracking (MST) can identify and locate surf zone fecal indicator bacteria (FIB) sources. However, DNA-based fecal marker results may raise new questions, since FIB and DNA marker sources can differ. Here, during 2 years of summertime (dry season) MST for a Goleta, California recreational beach, surf zone FIB were mainly from gulls, yet low level human-associated DNA-based fecal marker (HF183) was detected in 25 and 14% of surf zone water samples, respectively. Watershed sources were hypothesized because dry weather creek waters had elevated FIB, and runoff-generating rain events mobilized human (and dog) fecal markers and Salmonella spp. into creeks, with human marker HF183 detected in 40 and 50% of creek water samples, dog markers detected in 70 and 50% of samples, and Salmonella spp. in 40 and 33.3% of samples, respectively over 2 years. However, the dry weather estuary outlet was bermed in the first study year; simultaneously, creek fecal markers and pathogens were lower or similar to surf zone results. Although the berm breached in the second year, surf zone fecal markers stayed low. Watershed sediments, intertidal beach sands, and nearshore sediments were devoid of HF183 and dog-associated DNA markers. Based on dye tests and groundwater sampling, beach sanitary sewers were not leaking; groundwater was also devoid of HF183. Offshore sources appeared unlikely, since FIB and fecal markers decreased along a spatial gradient from the surf zone toward nearshore and offshore ocean waters. Further, like other regional beaches, surf zone HF183 corresponded significantly to bather counts, especially in the afternoons when there were more swimmers. However, morning detections of surf zone HF183 when there were few swimmers raised the possibility that the wastewater treatment plant (WWTP) offshore outfall discharged HF183 overnight which transported to the surf zone. These findings support that there may be lowest achievable limits of surf zone HF183 owing to several chronic and permanent, perhaps diurnal, low concentration sources.

19.
Water Res ; 202: 117378, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34246990

RESUMEN

Worldwide, fecal indicator bacteria (FIB) evidence coastal water contamination for which sources are unknown. Here, for two FIB-impacted Santa Barbara recreational beaches, hypothesized fecal sources were investigated over three dry seasons (summers) using nearly 2000 field samples of water (ocean, creek, groundwater), sand, sediments, effluent and fecal sources. In years 1 and 2, gull and dog feces were identified as the probable main FIB sources to surf zone waters, yet HF183 human fecal markers were consistently detected. Determining HF183 sources was therefore prioritized, via year 3 sub-studies. In lower watersheds, human and dog wastes were mobilized by small storms into creeks, but no storm drain outfalls or creeks discharged into surf zones. Beach area bathrooms, sewers, and a septic system were not sources: dye tracing discounted hydraulic connections, and shallow groundwater was uncontaminated. Sediments from coastal creeks and downstream scour ponds, nearshore marine sediments, and sands from inter- and supratidal zones contained neither HF183 nor pathogens. Two nearby wastewater treatment plant (WWTP) outfalls discharged HF183 into plumes that were either deep or distant with uncertain onshore transport. Regardless, local sources were evidenced, as surf zone HF183 detection rates mostly exceeded those offshore and nearshore (around boat anchorages). The presence of swimmers was associated with surf zone HF183, as swimmer counts (on weekdays, holidays, weekends, and during races) significantly correlated (p<0.05, n = 196) to HF183 detections. Besides comprehensively assessing all possible fecal sources, this study provides new explanations of chronic low-level human markers in recreational beach surf zones, suggesting likely lowest achievable HF183 thresholds.


Asunto(s)
Contaminación del Agua , Purificación del Agua , Animales , Perros , Monitoreo del Ambiente , Heces , Humanos , Microbiología del Agua
20.
Water Res ; 176: 115733, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32234606

RESUMEN

Urban disaster response requires disposal of complex wastes. This study regards a case wherein high intensity rainfall fell over a remote mountainous area previously burned by wildfire, generating debris flows that devastated a downstream town. Sanitary sewers and homes with septic systems were damaged, releasing human waste into the debris flow field. Contaminated sediments, with their high fecal indicator bacteria (FIB) concentrations, were cleared from public rights-of-way and creek channels by local authorities, then disposed onto distant Goleta Beach for beach nourishment, causing immediate surf zone microbiological water quality exceedances. To determine potential public health threats, disposed sediments and surf zone waters were sampled and analyzed-relative to reference samples of mountain soil and raw sewage-for FIB, pathogens, human (HF183) and other host- (Gull2 TaqMan, and DogBact) associated DNA-based fecal markers, and bacterial community 16S rRNA gene sequences. Approximately 20% of disposed sediment samples contained the HF183 marker; sequencing suggested that all samples were contaminated by sewage. In an initial sediment disposal period, surf zone waters harbored intestinal bacterial sequences that were shared with disposed sediments and sewage. Yet surf zone bacterial communities returned to mostly marine clades within weeks. Taken together, multiple conventional and DNA-based analyses informed this forensic assessment of human waste contamination. In the future, similar analyses could be used earlier in disaster response to guide sediment disposal decisions towards continuously protecting beachgoer health.


Asunto(s)
Microbiología del Agua , Calidad del Agua , Ciudades , Heces , Sedimentos Geológicos , Humanos , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA