Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 25(3): 1448-1467, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38412382

RESUMEN

Despite all recent progresses in nerve tissue engineering, critical-sized nerve defects are still extremely challenging to repair. Therefore, this study targets the bridging of critical nerve defects and promoting an oriented neuronal outgrowth by engineering innovative nerve guidance conduits (NGCs) synergistically possessing exclusive topographical, chemical, and mechanical cues. To do so, a mechanically adequate mixture of polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA) was first carefully selected as base material to electrospin nanofibrous NGCs simulating the extracellular matrix. The electrospinning process was performed using a newly designed 2-pole air gap collector that leads to a one-step deposition of seamless NGCs having a bilayered architecture with an inner wall composed of highly aligned fibers and an outer wall consisting of randomly oriented fibers. This architecture is envisaged to afford guidance cues for the extension of long neurites on the underlying inner fiber alignment and to concurrently provide a sufficient nutrient supply through the pores of the outer random fibers. The surface chemistry of the NGCs was then modified making use of a hollow cathode discharge (HCD) plasma reactor purposely designed to allow an effective penetration of the reactive species into the NGCs to eventually treat their inner wall. X-ray photoelectron spectroscopy (XPS) results have indeed revealed a successful O2 plasma modification of the inner wall that exhibited a significantly increased oxygen content (24 → 28%), which led to an enhanced surface wettability. The treatment increased the surface nanoroughness of the fibers forming the NGCs as a result of an etching effect. This effect reduced the ultimate tensile strength of the NGCs while preserving their high flexibility. Finally, pheochromocytoma (PC12) cells were cultured on the NGCs to monitor their ability to extend neurites which is the base of a good nerve regeneration. In addition to remarkably improved cell adhesion and proliferation on the plasma-treated NGCs, an outstanding neural differentiation occurred. In fact, PC12 cells seeded on the treated samples extended numerous long neurites eventually establishing a neural network-like morphology with an overall neurite direction following the alignment of the underlying fibers. Overall, PCL/PLGA NGCs electrospun using the 2-pole air gap collector and O2 plasma-treated using an HCD reactor are promising candidates toward a full repair of critical nerve damage.


Asunto(s)
Neuritas , Andamios del Tejido , Ratas , Animales , Andamios del Tejido/química , Neuritas/fisiología , Ingeniería de Tejidos/métodos , Regeneración Nerviosa , Proyección Neuronal
2.
Macromol Rapid Commun ; 44(8): e2300020, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36840963

RESUMEN

Natural fiber-reinforced composites are gaining increased interest for their significantly reduced carbon footprint compared to conventional glass or carbon fiber-based counterparts. In this study, natural fibers are used in a resorcinol-based epoxy resin that is thermally reshapable at higher temperatures (>180 °C) by using fast exchanging siloxane bonds, catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene. Stress relaxation times of only about 6 s at 220 °C can be reached. A resorcinol-based epoxy compound is selected because it can be derived from cellulose, opening ways for more sustainable and reshapable composite materials. In a last step of the research, the low viscosity vitrimer formulation (<200 mPa s) is applied to make a flax fiber-reinforced composite using an industrially relevant vacuum-assisted resin infusion process. A section of this composite is successfully reshaped, which allows for envisioning a second life for natural fiber-reinforced composites.


Asunto(s)
Lino , Siloxanos , Lino/química , Fibra de Carbono , Celulosa , Viscosidad
3.
J Am Chem Soc ; 144(27): 12280-12289, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35758403

RESUMEN

To develop siloxane-containing vitrimers with fast dynamic characteristics, different mechanistic pathways have been investigated using a range of catalysts. In particular, one siloxane exchange pathway has been found to show a fast dynamic behavior in a useful temperature range (180-220 °C) for its application in vitrimers. The mechanism is found to involve 1,5,7-triazabicyclo [4.4.0] dec-5-ene (TBD) as an organic catalyst in the presence of hydroxyl groups. Using this new mechanistic approach, vitrimers with ultrafast stress-relaxation characteristics (relaxation times below 10 s) have been prepared with a readily available epoxy resin and siloxane-amine hardener. Subsequently, the low viscosity siloxane-containing vitrimer resin enabled the preparation of glass fiber-reinforced vitrimer composites using an industrially relevant vacuum-assisted resin infusion technique. The resulting composite was successfully thermoformed into a new shape, which makes it possible to envision a second life for such highly engineered materials.


Asunto(s)
Siloxanos , Viscosidad
4.
J Acoust Soc Am ; 147(4): 2647, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32359267

RESUMEN

For centuries, wood, and more specifically spruce, has been the material of choice for violin top plates. Lately, carbon fiber instruments have entered the market. Some studies show that composite materials have potential advantages for making instruments [Damodaran, Lessard, and Babu, Acoust. Aust. 43, 117-122 (2015)]. However, no studies exist that evaluate violins made of different composite materials as judged by listeners. For this study, six prototype violins, differing only by the material of the top plate, were manufactured in a controlled laboratory setting. The six prototype violins were judged by experienced listeners in two double-blind experiments. In contrast to popular opinion that violins made from carbon have or lack a specific sound quality, the study provides insights in the diverse sounds and timbres violins from fiber-reinforced polymers can create. It allows an investigation of the links between the perception and the variations in material properties of the soundboards. Additionally, as neither players nor listeners are acquainted with these instruments, these results provide an interesting view on what type of qualities of violin-like sounds are preferred by listeners.


Asunto(s)
Música , Acústica , Actitud , Sonido , Madera
5.
Sensors (Basel) ; 18(8)2018 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-30126194

RESUMEN

Thin and flexible sensor foils are very suitable for unobtrusive integration with mechanical structures and allow monitoring for example strain and temperature while minimally interfering with the operation of those structures. Electrical strain gages have long been used for this purpose, but optical strain sensors based on Bragg gratings are gaining importance because of their improved accuracy, insusceptibility to electromagnetic interference, and multiplexing capability, thereby drastically reducing the amount of interconnection cables required. This paper reports on thin polymer sensor foils that can be used as photonic strain gage or temperature sensors, using several Bragg grating sensors multiplexed in a single polymer waveguide. Compared to commercially available optical fibers with Bragg grating sensors, our planar approach allows fabricating multiple, closely spaced sensors in well-defined directions in the same plane realizing photonic strain gage rosettes. While most of the reported Bragg grating sensors operate around a wavelength of 1550 nm, the sensors in the current paper operate around a wavelength of 850 nm, where the material losses are the lowest. This was accomplished by imprinting gratings with pitches 280 nm, 285 nm, and 290 nm at the core-cladding interface of an imprinted single mode waveguide with cross-sectional dimensions 3 × 3 µm². We show that it is possible to realize high-quality imprinted single mode waveguides, with gratings, having only a very thin residual layer which is important to limit bend losses or cross-talk with neighboring waveguides. The strain and temperature sensitivity of the Bragg grating sensors was found to be 0.85 pm/µÎµ and -150 pm/°C, respectively. These values correspond well with those of previously reported sensors based on the same materials but operating around 1550 nm, taking into account that sensitivity scales with the wavelength.

6.
Sensors (Basel) ; 17(4)2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28368319

RESUMEN

Nowadays, it is possible to manufacture smart composite materials with embedded fiber optic sensors. These sensors can be exploited during the composites' operating life to identify occurring damages such as delaminations. For composite materials adopted in the aviation and wind energy sector, delaminations are most often caused by impacts with external objects. The detection, localization and quantification of such impacts are therefore crucial for the prevention of catastrophic events. In this paper, we demonstrate the feasibility to perform impact identification in smart composite structures with embedded fiber optic sensors. For our analyses, we manufactured a carbon fiber reinforced plate in which we embedded a distributed network of fiber Bragg grating (FBG) sensors. We impacted the plate with a modal hammer and we identified the impacts by processing the FBG data with an improved fast phase correlation (FPC) algorithm in combination with a variable selective least squares (VS-LS) inverse solver approach. A total of 164 impacts distributed on 41 possible impact locations were analyzed. We compared our methodology with the traditional P-Inv based approach. In terms of impact localization, our methodology performed better in 70.7% of the cases. An improvement on the impact time domain reconstruction was achieved in 95 . 1 % of the cases.

7.
Sensors (Basel) ; 16(6)2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-27314347

RESUMEN

This research presents a case study of production monitoring on an aerospace composite component: the hinge arm of the droop nose mechanism on the Airbus A380 wing leading edge. A sensor network composed of Fibre Bragg Gratings, capacitive sensors for cure monitoring and thermocouples was embedded in its fibre reinforced lay-up and measurements were acquired throughout its Resin Transfer Moulding production process. Two main challenges had to be overcome: first, the integration of the sensor lines in the existing Resin Transfer Moulding mould without modifying it; second, the demoulding of the component without damaging the sensor lines. The proposed embedding solution has proved successful. The wavelength shifts of the Fibre Bragg Gratings were observed from the initial production stages, over the resin injection, the complete curing of the resin and the cooling-down prior to demoulding. The sensors proved to be sensitive to detecting the resin flow front, vacuum and pressure increase into the mould and the temperature increase caused by the resin curing. Measurements were also acquired during the post-curing cycle. Residual strains during all steps of the process were derived from the sensors' wavelength shift, showing values up to 0.2% in compression. Moreover, the capacitive sensors were able to follow-up the curing degree during the production process. The sensors proved able to detect the resin flow front, whereas thermocouples could not measure an appreciable increase of temperature due to the fact that the resin had the same temperature as the mould.

8.
Sensors (Basel) ; 15(5): 10852-71, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25961383

RESUMEN

Quality of embedment of optical fibre sensors in carbon fibre-reinforced polymers plays an important role in the resultant properties of the composite, as well as for the correct monitoring of the structure. Therefore, availability of a tool able to check the optical fibre sensor-composite interaction becomes essential. High-resolution 3D X-ray Micro-Computed Tomography, or Micro-CT, is a relatively new non-destructive inspection technique which enables investigations of the internal structure of a sample without actually compromising its integrity. In this work the feasibility of inspecting the position, the orientation and, more generally, the quality of the embedment of an optical fibre sensor in a carbon fibre reinforced laminate at unit cell level have been proven.

9.
J Stomatol Oral Maxillofac Surg ; : 101916, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763267

RESUMEN

INTRODUCTION: This paper employs finite element analysis to assess the biomechanical behavior of surgically assisted rapid palatal expansion (SARPE) with a bone-borne transpalatal distractor (TPD) by varying surgical parameters. MATERIAL AND METHODS: Nine models were constructed to scrutinize the effects of pterygomaxillary disjunction (PMD), lateral osteotomy positioning, and TPD placement on displacement profiles and Von Mises stresses. These models encompassed variations such as no, unilateral or bilateral PMD, asymmetrical lateral osteotomy, and five TPD locations. RESULTS: Performing a PMD reduces posterior resistance to transverse expansion, resulting in 10-20 % stress reduction around the maxillofacial complex. No significant changes in horizontal tipping were observed post-PMD. The asymmetric lateral osteotomy model exhibited larger displacements on the side with a more superiorly positioned osteotomy. Reduced stresses were observed at the maxillary body and medial pterygoid plate (superiorly), while increased stresses were observed at the medial (inferiorly) and lateral pterygoid plates. More posterior TPD placement facilitated more parallel expansion thus less horizontal tipping, albeit with increased vertical tipping. DISCUSSION: SARPE procedures (distractor and osteotomy positions) can be tailored based on desired outcomes. PMD reduces stress within the maxillofacial complex but doesn't significantly affect tipping. Higher lateral osteotomies lead to increased displacements, more posterior distractors to more parallel expansion.

10.
Opt Express ; 21(24): 29979-99, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24514549

RESUMEN

Digital Image Correlation (DIC) is a well-established non-contact optical metrology method. It employs digital image analysis to extract the full-field displacements and strains that occur in objects subjected to external stresses. Despite recent DIC progress, many problematic areas which greatly affect accuracy and that can seldomly be avoided, received very little attention. Problems posed by the presence of sharp displacement discontinuities, reflections, object borders or edges can be linked to the analysed object's properties and deformation. Other problematic areas, such as image noise, localized reflections or shadows are related more to the image acquisition process. This paper proposes a new subset-based pixel-level robust DIC method for in-plane displacement measurement which addresses all of these problems in a straightforward and unified approach, significantly improving DIC measurement accuracy compared to classic approaches. The proposed approach minimizes a robust energy functional which adaptively weighs pixel differences in the motion estimation process. The aim is to limit the negative influence of pixels that present erroneous or inconsistent motions by enforcing local motion consistency. The proposed method is compared to the classic Newton-Raphson DIC method in terms of displacement accuracy in three experiments. The first experiment is numerical and presents three combined problems: sharp displacement discontinuities, missing image information and image noise. The second experiment is a real experiment in which a plastic specimen is developing a lateral crack due to the application of uniaxial stress. The region around the crack presents both reflections that saturate the image intensity levels leading to missing image information, as well as sharp motion discontinuities due to the plastic film rupturing. The third experiment compares the proposed and classic DIC approaches with generic computer vision optical flow methods using images from the popular Middlebury optical flow evaluation dataset. Results in all experiments clearly show the proposed method's improved measurement accuracy with respect to the classic approach considering the challenging conditions. Furthermore, in image areas where the classic approach completely fails to recover motion due to severe image de-correlation, the proposed method provides reliable results.


Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Procesamiento de Señales Asistido por Computador , Técnica de Sustracción , Gráficos por Computador , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
11.
Polymers (Basel) ; 15(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36904505

RESUMEN

The nonlinear behaviour of fibre-reinforced polymer composites (FRPC) in transverse loading is mainly induced by the constituent polymer matrix. The thermoset and thermoplastic matrices are typically rate- and temperature-dependent, complicating the dynamic material characterization process. Under dynamic compression, the microstructure of the FRPC develops local strains and local strain rates whose values can be much higher than those applied at macroscopic level. The correlation between the local (microscopic) values and the measurable (macroscopic) ones still present challenges when applying the strain rate in the range 10-3-103 s-1. This paper presents an in-house uniaxial compression test setup to provide robust stress-strain measurements applying strain rates up to 100 s-1. A semi-crystalline thermoplastic polyetheretherketone (PEEK) and a toughened thermoset epoxy PR520 are assessed and characterized. The thermomechanical response of the polymers is further modelled using an advanced glassy polymer model, naturally capturing the isothermal to adiabatic transition. A micromechanical model of a unidirectional composite undergoing dynamic compression is developed by using both validated polymers as matrices reinforced by carbon fibres (CF) using Representative Volume Element (RVE) models. These RVEs are used to analyse the correlation between the micro- and macroscopic thermomechanical response of the CF/PR520 and CF/PEEK systems investigated at intermediate to high strain rates. Both systems experience an excessive strain localization with local plastic strain about 19% when a macroscopic strain of 3.5% is applied. The comparison of using a thermoplastic and a thermoset as a matrix in composites is discussed with regard to the rate-dependence, the interface debonding and the self-heating effect.

12.
Materials (Basel) ; 15(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955256

RESUMEN

Formation of a habit plane during martensitic transformation is related to an invariant plane strain transformation, which involves dislocation glide and twins. In the current work, the Phenomenological Theory of Martensitic Transformation (PTMT) is employed to study the crystallographic features while the phase field simulation is used to study the microstructure evolution for martensitic transformation of Ti-6Al-4V alloy. Results show that mechanical constraints play a key role in the microstructure evolution. It is shown that a twinned structure with very small twinned variants is geometrically difficult to form due to the lattice parameters of Ti-6Al-4V alloy. It is concluded that the predicted habit plane from the PTMT is consistent with results of the micro-elastic theory. The formation of a triangular morphology is favored geometrically and elastically.

13.
Polymers (Basel) ; 14(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35631824

RESUMEN

The recyclability and improved suitability for high-volume production make fiber-reinforced thermoplastic polymers (FRP) attractive alternatives for the current thermoset-based ones. However, while they are more ductile than their thermoset counterparts, their behavior is also more susceptible to environmental conditions such as humidity, temperature, and strain rate. The latter can trigger self-heating and thermal softening effects. The role of matrix self-heating in FRP subjected to transverse loading is investigated using micromechanical modeling. Particularly, the effect of self-heating, strain rate and conductivity of the fiber-matrix interface is illustrated. It is shown that local heating of the matrix is dominant for the homogenized behavior of the material. Although the global homogenized temperature increase is limited, local thermal softening can induce premature failure. It is shown that the effect of thermal softening can be more prominent with increasing volume fraction, increasing strain rate, and lower interface conductivity.

14.
Polymers (Basel) ; 14(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35054704

RESUMEN

Recent development in the field of additive manufacturing, also known as three-dimensional (3D) printing, has allowed for the incorporation of continuous fiber reinforcement into 3D-printed polymer parts. These fiber reinforcements allow for the improvement of the mechanical properties, but compared to traditionally produced composite materials, the fiber volume fraction often remains low. This study aims to evaluate the in-nozzle impregnation of continuous aramid fiber reinforcement with glycol-modified polyethylene terephthalate (PETG) using a modified, low-cost, tabletop 3D printer. We analyze how dimensional printing parameters such as layer height and line width affect the fiber volume fraction and fiber dispersion in printed composites. By varying these parameters, unidirectional specimens are printed that have an inner structure going from an array-like to a continuous layered-like structure with fiber loading between 20 and 45 vol%. The inner structure was analyzed by optical microscopy and Computed Tomography (µCT), achieving new insights into the structural composition of printed composites. The printed composites show good fiber alignment and the tensile modulus in the fiber direction increased from 2.2 GPa (non-reinforced) to 33 GPa (45 vol%), while the flexural modulus in the fiber direction increased from 1.6 GPa (non-reinforced) to 27 GPa (45 vol%). The continuous 3D reinforced specimens have quality and properties in the range of traditional composite materials produced by hand lay-up techniques, far exceeding the performance of typical bulk 3D-printed polymers. Hence, this technique has potential for the low-cost additive manufacturing of small, intricate parts with substantial mechanical performance, or parts of which only a small number is needed.

16.
J Sports Sci ; 29(11): 1201-13, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21777166

RESUMEN

In this study, we develop a finite element model to examine the oblique soccer ball bounce. A careful simulation of the interaction between the ball membrane and air pressure in the ball makes the model more realistic than analytical models, and helps us to conduct an accurate study on the effect of different parameters on a bouncing ball. This finite element model includes a surface-based fluid cavity to model the mechanical response between the ball carcass and the internal air of the ball. An experimental set-up was devised to study the bounce of the ball in game-relevant impact conditions. Ball speed, angle, and spin were measured before and after the bounce, as well as ball deformation and the forces during the impact. The finite element model has been validated with three different sets of data, and the results demonstrate that the finite element model reported here is a valuable tool for the study of ball bounce. After validation of the model, the effect of the friction coefficient on soccer ball bounce was studied numerically. Simulation results show that increasing the friction coefficient may result in reversal of the horizontal impact force.


Asunto(s)
Análisis de Elementos Finitos , Movimiento (Física) , Fútbol , Equipo Deportivo , Aire , Simulación por Computador , Fricción , Presión , Rotación , Estrés Mecánico
17.
Sci Rep ; 11(1): 14034, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234245

RESUMEN

Temporomandibular joint (TMJ) replacement with an implant is only used when all other conservative treatments fail. Despite the promising short-term results, the long-term implications of TMJ replacement in masticatory function are not fully understood. Previous human and animal studies have shown that perturbations to the normal masticatory function can lead to morphological and functional changes in the craniomaxillofacial system. A clearer understanding of the biomechanical implications of TMJ replacement in masticatory function may help identify design shortcomings that hinder their long-term success. In this study, patient-specific finite element models of the intact and implanted mandible were developed and simulated under four different biting tasks. In addition, the impact of re-attaching of the lateral pterygoid was also evaluated. The biomechanics of both models was compared regarding both mandibular displacements and principal strain patterns. The results show an excessive mediolateral and anteroposterior displacement of the TMJ implant compared to the intact joint in three biting tasks, namely incisor (INC), left moral (LML), and right molar (RML) biting. The main differences in principal strain distributions were found across the entire mandible, most notably from the symphysis to the ramus of the implanted side. Furthermore, the re-attachment of the lateral pterygoid seems to increase joint anteroposterior displacement in both INC, LML and RML biting while reducing it during LGF. Accordingly, any new TMJ implant design must consider stabilising both mediolateral and anteroposterior movement of the condyle during biting activities and promoting a more natural load transmission along the entire mandible.


Asunto(s)
Fenómenos Biomecánicos , Prótesis Articulares , Mandíbula/cirugía , Modelos Anatómicos , Articulación Temporomandibular/cirugía , Algoritmos , Análisis de Elementos Finitos , Humanos , Imagenología Tridimensional , Mandíbula/anatomía & histología , Diseño de Prótesis , Articulación Temporomandibular/anatomía & histología , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
18.
Materials (Basel) ; 14(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070105

RESUMEN

UD glass/PA6 coupons with an open hole are subjected to tensile and compressive loading. Three layups: [0/90]5s, [+45/-45]5s and [+45/0/-45/90]3s with a shape based on ASTM D5766 were tested. Both monotonic loading as well as loading-unloading-reloading tests were executed. The strain field on the sample surface was measured with digital image correlation. This allowed identifying the distribution of the strain field during loading, permanent deformation and the evolution of the sample elastic modulus. This information is not frequently measured. Yet, it is vital for the development and validation of advanced failure models. The results indicate that the thermoplastic matrix allows large plastic deformation under tensile loading for the specimens with layup [+45/-45]5s. In addition, the specimen elastic modulus reduces by about 70%. The other layups show minor permanent deformation, while the elastic modulus reduces by up to 15%. Furthermore, the quasi-isotropic laminate shows a significant post-failure load-bearing capacity under compression loading. The results are complemented with post-mortem damage and fracture observations using optical microscopy and ultrasound inspection.

19.
Artículo en Inglés | MEDLINE | ID: mdl-33798079

RESUMEN

In the context of designing a next-generation ultrasonic polar scan (UPS) measurement system for viscoelastic material characterization, a novel approach is proposed, which draws on a set of cylindrically focused emitters in conjunction with a circular phased array (C-PA) receiver in order to create a portable measurement system while improving the data quality and ease the data interpretation. To explore the potential of the new approach and determine its optimal design parameters, a 3-D analytical model is presented to numerically simulate UPS experiments with the proposed system. Furthermore, a postprocessing procedure is worked out to treat the acquired raw data with the aim to deal with the integrating effect of finite size transducers and directly reconstruct the angle-dependent plane wave reflection coefficients of the sample under study. As the accuracy of the reconstruction heavily depends on various design parameters, a parameter study focusing on the influence of three main experimental parameters is performed to guide the optimal design. For each of these parameter studies, the UPS simulation results have been inverted, and the errors on the estimated C-tensor parameters have been deduced. First, it is shown that, for a given frequency, the radius of the C-PA must be large enough to capture both the specular and nonspecular reflected field, which is crucial to assure a correct reconstruction of the plane wave characteristics and find proper estimates of the C-tensor parameters. Second, the impact of the emitter and receiver lengths on the quality of the reconstruction and the C-tensor parameters has been investigated, yielding superior results upon increasing either of them. Finally, a dedicated study of the pitch of the C-PA elements and the angular range of the cylindrically focused emitters shows that aliasing effects disturb the results if the pitch is too large. However, this effect can somewhat be mitigated by employing multiple emitters with a restricted angular range. Using the knowledge of the abovementioned parameter studies, a simulated UPS experiment using a proper set of design parameters is performed for a cross-ply carbon epoxy laminate. The postprocessed reconstruction based on these data shows an excellent agreement with the theoretical plane wave results.

20.
Ultrasonics ; 116: 106482, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34102523

RESUMEN

A new extension of the shear deformation theory to fifth order in order to calculate the spectrum of Lamb waves in orthotropic media over a wide frequency range is developed and analyzed. The aspiration of the proposed method is to create an alternative framework to exhaustive 3D elasticity based solutions by increasing computational efficiency without losing accuracy, nor robustness. A new computational framework is introduced which allows to estimate the dispersion curves for the first nine symmetric and nine anti-symmetric Lamb modes. Analytically calculated dispersion curves using 5-SDT for different propagation directions and polar plots for selected frequency of different materials are compared with the results from both the semi analytical finite element method, and lower order shear deformation theories. Careful analysis for individual laminae and for symmetric composite laminates exhibits a good agreement between the new higher order plate theory and the semi analytical finite element method over an extensive frequency range. In addition, attenuation plots show that the proposed method can also be used for visco-elastic materials (or highly damped materials). The advantage of the new higher order plate theory and its numerical implementation is that it is much more computationally efficient compared to comprehensive methods as Lamb wave polar plots of composite plates as function of incidence angle, polar angle and frequency can be calculated in less than a second on a standard laptop. Consequently, the use of this framework in inversion routines opens up the possibility of quasi real-time Structural Health Monitoring for visco-elastic composites covering a sufficiently wide frequency range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA