RESUMEN
Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.
Asunto(s)
Dolicoles , Dolicoles/metabolismo , Dolicoles/biosíntesis , Humanos , Glicosilación , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/genética , Masculino , Mutación Missense , FemeninoRESUMEN
Glycosylation-deficient Chinese hamster ovary (CHO) cell lines have been instrumental in the discovery of N-glycosylation machinery. Yet, the molecular causes of the glycosylation defects in the Lec5 and Lec9 mutants have been elusive, even though for both cell lines a defect in dolichol formation from polyprenol was previously established. We recently found that dolichol synthesis from polyprenol occurs in three steps consisting of the conversion of polyprenol to polyprenal by DHRSX, the reduction of polyprenal to dolichal by SRD5A3 and the reduction of dolichal to dolichol, again by DHRSX. This led us to investigate defective dolichol synthesis in Lec5 and Lec9 cells. Both cell lines showed increased levels of polyprenol and its derivatives, concomitant with decreased levels of dolichol and derivatives, but no change in polyprenal levels, suggesting DHRSX deficiency. Accordingly, N-glycan synthesis and changes in polyisoprenoid levels were corrected by complementation with human DHRSX but not with SRD5A3. Furthermore, the typical polyprenol dehydrogenase and dolichal reductase activities of DHRSX were absent in membrane preparations derived from Lec5 and Lec9 cells, while the reduction of polyprenal to dolichal, catalyzed by SRD5A3, was unaffected. Long-read whole genome sequencing of Lec5 and Lec9 cells did not reveal mutations in the ORF of SRD5A3, but the genomic region containing DHRSX was absent. Lastly, we established the sequence of Chinese hamster DHRSX and validated that this protein has similar kinetic properties to the human enzyme. Our work therefore identifies the basis of the dolichol synthesis defect in CHO Lec5 and Lec9 cells.
RESUMEN
Free oligosaccharides (fOSs) are soluble oligosaccharide species generated during N-glycosylation of proteins. Although little is known about fOS metabolism, the recent identification of NGLY1 deficiency, a congenital disorder of deglycosylation (CDDG) caused by loss of function of an enzyme involved in fOS metabolism, has elicited increased interest in fOS processing. The catabolism of fOSs has been linked to the activity of a specific cytosolic mannosidase, MAN2C1, which cleaves α1,2-, α1,3-, and α1,6-mannose residues. In this study, we report the clinical, biochemical, and molecular features of six individuals, including two fetuses, with bi-allelic pathogenic variants in MAN2C1; the individuals are from four different families. These individuals exhibit dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Complementation experiments with isogenic MAN2C1-KO HAP1 cells confirm the pathogenicity of three of the identified MAN2C1 variants. We further demonstrate that MAN2C1 variants lead to accumulation and delay in the processing of fOSs in proband-derived cells. These results emphasize the involvement of MAN2C1 in human neurodevelopmental disease and the importance of fOS catabolism.
Asunto(s)
Quistes del Sistema Nervioso Central/genética , Trastornos Congénitos de Glicosilación/genética , Hamartoma/genética , Discapacidad Intelectual/genética , Oligosacáridos/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Polimicrogiria/genética , alfa-Manosidasa/genética , Adolescente , Alelos , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Línea Celular Tumoral , Quistes del Sistema Nervioso Central/metabolismo , Quistes del Sistema Nervioso Central/patología , Vermis Cerebeloso/metabolismo , Vermis Cerebeloso/patología , Niño , Preescolar , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Femenino , Feto , Glicosilación , Hamartoma/metabolismo , Hamartoma/patología , Humanos , Hipotálamo/metabolismo , Hipotálamo/patología , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Leucocitos/metabolismo , Leucocitos/patología , Masculino , Manosa/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Polimicrogiria/metabolismo , Polimicrogiria/patología , Lengua/metabolismo , Lengua/patología , alfa-Manosidasa/deficienciaRESUMEN
Hydroxylated fatty acids are important intermediates in lipid metabolism and signaling. Surprisingly, the metabolism of 4-hydroxy fatty acids remains largely unexplored. We found that both ACAD10 and ACAD11 unite two enzymatic activities to introduce these metabolites into mitochondrial and peroxisomal ß-oxidation, respectively. First, they phosphorylate 4-hydroxyacyl-CoAs via a kinase domain, followed by an elimination of the phosphate to form enoyl-CoAs catalyzed by an acyl-CoA dehydrogenase (ACAD) domain. Studies in knockout cell lines revealed that ACAD10 preferentially metabolizes shorter chain 4-hydroxy fatty acids than ACAD11 (i.e. 6 carbons versus 10 carbons). Yet, recombinant proteins showed comparable activity on the corresponding 4-hydroxyacyl-CoAs. This suggests that the localization of ACAD10 and ACAD11 to mitochondria and peroxisomes, respectively, might influence their physiological substrate spectrum. Interestingly, we observed that ACAD10 is cleaved internally during its maturation generating a C-terminal part consisting of the ACAD domain, and an N-terminal part comprising the kinase domain and a haloacid dehalogenase (HAD) domain. HAD domains often exhibit phosphatase activity, but negligible activity was observed in the case of ACAD10. Yet, inactivation of a presumptive key residue in this domain significantly increased the kinase activity, suggesting that this domain might have acquired a regulatory function to prevent accumulation of the phospho-hydroxyacyl-CoA intermediate. Taken together, our work reveals that 4-hydroxy fatty acids enter mitochondrial and peroxisomal fatty acid ß-oxidation via two enzymes with an overlapping substrate repertoire.
Asunto(s)
Ácidos Grasos , Oxidación-Reducción , Peroxisomas , Ácidos Grasos/metabolismo , Humanos , Peroxisomas/metabolismo , Mitocondrias/metabolismo , Acil-CoA Deshidrogenasas/metabolismo , Acil-CoA Deshidrogenasas/genética , Animales , Células HEK293RESUMEN
Cells are continuously exposed to potentially dangerous compounds. Progressive accumulation of damage is suspected to contribute to neurodegenerative diseases and aging, but the molecular identity of the damage remains largely unknown. Here we report that PARK7, an enzyme mutated in hereditary Parkinson's disease, prevents damage of proteins and metabolites caused by a metabolite of glycolysis. We found that the glycolytic metabolite 1,3-bisphosphoglycerate (1,3-BPG) spontaneously forms a novel reactive intermediate that avidly reacts with amino groups. PARK7 acts by destroying this intermediate, thereby preventing the formation of proteins and metabolites with glycerate and phosphoglycerate modifications on amino groups. As a consequence, inactivation of PARK7 (or its orthologs) in human cell lines, mouse brain, and Drosophila melanogaster leads to the accumulation of these damaged compounds, most of which have not been described before. Our work demonstrates that PARK7 function represents a highly conserved strategy to prevent damage in cells that metabolize carbohydrates. This represents a fundamental link between metabolism and a type of cellular damage that might contribute to the development of Parkinson's disease.
Asunto(s)
Glucosa/metabolismo , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo , Animales , Biomarcadores , Metabolismo de los Hidratos de Carbono , Cromatografía Liquida , Drosophila melanogaster , Técnicas de Silenciamiento del Gen , Ácidos Glicéricos/metabolismo , Glucólisis , Humanos , Espectrometría de Masas , Redes y Vías Metabólicas , Metaboloma , Metabolómica/métodos , Ratones , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteína Desglicasa DJ-1/químicaRESUMEN
Hundreds of metabolic enzymes work together smoothly in a cell. These enzymes are highly specific. Nevertheless, under physiological conditions, many perform side-reactions at low rates, producing potentially toxic side-products. An increasing number of metabolite repair enzymes are being discovered that serve to eliminate these noncanonical metabolites. Some of these enzymes are extraordinarily conserved, and their deficiency can lead to diseases in humans or embryonic lethality in mice, indicating their central role in cellular metabolism. We discuss how metabolite repair enzymes eliminate glycolytic side-products and prevent negative interference within and beyond this core metabolic pathway. Extrapolating from the number of metabolite repair enzymes involved in glycolysis, hundreds more likely remain to be discovered that protect a wide range of metabolic pathways.
Asunto(s)
Enzimas/metabolismo , Animales , Glucólisis , Humanos , RatonesRESUMEN
We describe a genetic syndrome due to PGM2L1 deficiency. PGM2 and PGM2L1 make hexose-bisphosphates, like glucose-1,6-bisphosphate, which are indispensable cofactors for sugar phosphomutases. These enzymes form the hexose-1-phosphates crucial for NDP-sugars synthesis and ensuing glycosylation reactions. While PGM2 has a wide tissue distribution, PGM2L1 is highly expressed in the brain, accounting for the elevated concentrations of glucose-1,6-bisphosphate found there. Four individuals (three females and one male aged between 2 and 7.5 years) with bi-allelic inactivating mutations of PGM2L1 were identified by exome sequencing. All four had severe developmental and speech delay, dysmorphic facial features, ear anomalies, high arched palate, strabismus, hypotonia, and keratosis pilaris. Early obesity and seizures were present in three individuals. Analysis of the children's fibroblasts showed that glucose-1,6-bisphosphate and other sugar bisphosphates were markedly reduced but still present at concentrations able to stimulate phosphomutases maximally. Hence, the concentrations of NDP-sugars and glycosylation of the heavily glycosylated protein LAMP2 were normal. Consistent with this, serum transferrin was normally glycosylated in affected individuals. PGM2L1 deficiency does not appear to be a glycosylation defect, but the clinical features observed in this neurodevelopmental disorder point toward an important but still unknown role of glucose-1,6-bisphosphate or other sugar bisphosphates in brain metabolism.
Asunto(s)
Glucosa-6-Fosfato/análogos & derivados , Mutación , Trastornos del Neurodesarrollo/patología , Fosfotransferasas/genética , Alelos , Niño , Preescolar , Femenino , Glucosa-6-Fosfato/biosíntesis , Glicosilación , Humanos , Masculino , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , LinajeRESUMEN
Neutropenia and neutrophil dysfunction in glycogen storage disease type 1b (GSD1b) and severe congenital neutropenia type 4 (SCN4), associated with deficiencies of the glucose-6-phosphate transporter (G6PT/SLC37A4) and the phosphatase G6PC3, respectively, are the result of the accumulation of 1,5-anhydroglucitol-6-phosphate in neutrophils. This is an inhibitor of hexokinase made from 1,5-anhydroglucitol (1,5-AG), an abundant polyol in blood. 1,5-AG is presumed to be reabsorbed in the kidney by a sodium-dependent-transporter of uncertain identity, possibly SGLT4/SLC5A9 or SGLT5/SLC5A10. Lowering blood 1,5-AG with an SGLT2-inhibitor greatly improved neutrophil counts and function in G6PC3-deficient and GSD1b patients. Yet, this effect is most likely mediated indirectly, through the inhibition of the renal 1,5-AG transporter by glucose, when its concentration rises in the renal tubule following inhibition of SGLT2. To identify the 1,5-AG transporter, both human and mouse SGLT4 and SGLT5 were expressed in HEK293T cells and transport measurements were performed with radiolabelled compounds. We found that SGLT5 is a better carrier for 1,5-AG than for mannose, while the opposite is true for human SGLT4. Heterozygous variants in SGLT5, associated with a low level of blood 1,5-AG in humans cause a 50-100% reduction in 1,5-AG transport activity tested in model cell lines, indicating that SGLT5 is the predominant kidney 1,5-AG transporter. These and other findings led to the conclusion that (1) SGLT5 is the main renal transporter of 1,5-AG; (2) frequent heterozygous mutations (allelic frequency > 1%) in SGLT5 lower blood 1,5-AG, favourably influencing neutropenia in G6PC3 or G6PT deficiency; (3) the effect of SGLT2-inhibitors on blood 1,5-AG level is largely indirect; (4) specific SGLT5-inhibitors would be more efficient to treat these neutropenias than SGLT2-inhibitors.
Asunto(s)
Neutropenia , Animales , Humanos , Ratones , Antiportadores , Células HEK293 , Riñón , Proteínas de Transporte de Membrana , Proteínas de Transporte de Monosacáridos/genética , Neutropenia/genética , Transportador 2 de Sodio-Glucosa/genéticaRESUMEN
Transaminases play key roles in central metabolism, transferring the amino group from a donor substrate to an acceptor. These enzymes can often act, with low efficiency, on compounds different from the preferred substrates. To understand what might have shaped the substrate specificity of this class of enzymes, we examined the reactivity of six human cytosolic transaminases towards amino acids whose main degradative pathways do not include any transamination. We also tested whether sugars and sugar phosphates could serve as alternative amino group acceptors for these cytosolic enzymes. Each of the six aminotransferases reacted appreciably with at least three of the alternative amino acid substrates in vitro, albeit at usually feeble rates. Reactions with L-Thr, L-Arg, L-Lys and L-Asn were consistently very slow-a bias explained in part by the structural differences between these amino acids and the preferred substrates of the transaminases. On the other hand, L-His and L-Trp reacted more efficiently, particularly with GTK (glutamine transaminase K; also known as KYAT1). This points towards a role of GTK in the salvage of L-Trp (in cooperation with ω-amidase and possibly with the cytosolic malate dehydrogenase, MDH1, which efficiently reduced the product of L-Trp transamination). Finally, the transaminases were extremely ineffective at utilizing sugars and sugar derivatives, with the exception of the glycolytic intermediate dihydroxyacetone phosphate, which was slowly but appreciably transaminated by some of the enzymes to yield serinol phosphate. Evidence for the formation of this compound in a human cell line was also obtained. We discuss the biological and evolutionary implications of our results.
Asunto(s)
Aminoácidos , Transaminasas , Citosol/metabolismo , Humanos , Cinética , Especificidad por Sustrato , Azúcares , Transaminasas/metabolismoRESUMEN
Mechanistic understanding of the factors that govern host tropism remains incompletely understood for most pathogens. Brucella species, which are capable of infecting a wide range of hosts, offer a useful avenue to address this question. We hypothesized that metabolic fine-tuning to intrahost niches is likely an underappreciated axis underlying pathogens' ability to infect new hosts and tropism. In this work, we compared the central metabolism of seven Brucella species by stable isotopic labeling and genetics. We identified two functionally distinct groups, one overlapping with the classical zoonotic species of domestic livestock that exclusively use the pentose phosphate pathway (PPP) for hexose catabolism, whereas species from the second group use mostly the Entner-Doudoroff pathway (EDP). We demonstrated that the metabolic dichotomy among Brucellae emerged after the acquisition of two independent EDP-inactivating mutations in all classical zoonotic species. We then examined the pathogenicity of key metabolic mutants in mice and confirmed that this trait is tied to virulence. Altogether, our data are consistent with the hypothesis that the PPP has been incrementally selected over the EDP in parallel to Brucella adaptation to domestic livestock.
Asunto(s)
Brucella/genética , Brucella/metabolismo , Vía de Pentosa Fosfato/genética , Adaptación Biológica/genética , Animales , Zoonosis Bacterianas/genética , Evolución Biológica , Femenino , Ratones , Ratones Endogámicos BALB C , Vía de Pentosa Fosfato/fisiología , Fenotipo , VirulenciaRESUMEN
The cytosolic enzyme ethylmalonyl-CoA decarboxylase (ECHDC1) decarboxylates ethyl- or methyl-malonyl-CoA, two side products of acetyl-CoA carboxylase. These CoA derivatives can be used to synthesize a subset of branched-chain fatty acids (FAs). We previously found that ECHDC1 limits the synthesis of these abnormal FAs in cell lines, but its effects in vivo are unknown. To further evaluate the effects of ECHDC1 deficiency, we generated knockout mice. These mice were viable, fertile, showed normal postnatal growth, and lacked obvious macroscopic and histologic changes. Surprisingly, tissues from wild-type mice already contained methyl-branched FAs due to methylmalonyl-CoA incorporation, but these FAs were only increased in the intraorbital glands of ECHDC1 knockout mice. In contrast, ECHDC1 knockout mice accumulated 16-20-carbon FAs carrying ethyl-branches in all tissues, which were undetectable in wild-type mice. Ethyl-branched FAs were incorporated into different lipids, including acylcarnitines, phosphatidylcholines, plasmanylcholines, and triglycerides. Interestingly, we found a variety of unusual glycine-conjugates in the urine of knockout mice, which included adducts of ethyl-branched compounds in different stages of oxidation. This suggests that the excretion of potentially toxic intermediates of branched-chain FA metabolism might prevent a more dramatic phenotype in these mice. Curiously, ECHDC1 knockout mice also accumulated 2,2-dimethylmalonyl-CoA. This indicates that the broad specificity of ECHDC1 might help eliminate a variety of potentially dangerous branched-chain dicarboxylyl-CoAs. We conclude that ECHDC1 prevents the formation of ethyl-branched FAs and that urinary excretion of glycine-conjugates allows mice to eliminate potentially deleterious intermediates of branched-chain FA metabolism.
Asunto(s)
Acilcoenzima A/metabolismo , Carboxiliasas/deficiencia , Ácidos Grasos/metabolismo , Acilcoenzima A/genética , Animales , Carboxiliasas/metabolismo , Ácidos Grasos/genética , Ratones , Ratones NoqueadosRESUMEN
N-acetylneuraminate (Neu5Ac), an abundant sugar present in glycans in vertebrates and some bacteria, can be used as an energy source by several prokaryotes, including Escherichia coli. In solution, more than 99% of Neu5Ac is in cyclic form (≈92% beta-anomer and ≈7% alpha-anomer), whereas <0.5% is in the open form. The aldolase that initiates Neu5Ac metabolism in E. coli, NanA, has been reported to act on the alpha-anomer. Surprisingly, when we performed this reaction at pH 6 to minimize spontaneous anomerization, we found NanA and its human homolog NPL preferentially metabolize the open form of this substrate. We tested whether the E. coli Neu5Ac anomerase NanM could promote turnover, finding it stimulated the utilization of both beta and alpha-anomers by NanA in vitro. However, NanM is localized in the periplasmic space and cannot facilitate Neu5Ac metabolism by NanA in the cytoplasm in vivo. We discovered that YhcH, a cytoplasmic protein encoded by many Neu5Ac catabolic operons and belonging to a protein family of unknown function (DUF386), also facilitated Neu5Ac utilization by NanA and NPL and displayed Neu5Ac anomerase activity in vitro. YhcH contains Zn, and its accelerating effect on the aldolase reaction was inhibited by metal chelators. Remarkably, several transition metals accelerated Neu5Ac anomerization in the absence of enzyme. Experiments with E. coli mutants indicated that YhcH expression provides a selective advantage for growth on Neu5Ac. In conclusion, YhcH plays the unprecedented role of providing an aldolase with the preferred unstable open form of its substrate.
Asunto(s)
Fructosa-Bifosfato Aldolasa/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Escherichia coli/enzimología , Fructosa-Bifosfato Aldolasa/química , Modelos Moleculares , Ácido N-Acetilneuramínico/química , Periplasma/metabolismo , Conformación Proteica , Transporte de Proteínas , EstereoisomerismoRESUMEN
Neutropenia and neutrophil dysfunction cause serious infections and inflammatory bowel disease in glycogen storage disease type Ib (GSD-Ib). Our discovery that accumulating 1,5-anhydroglucitol-6-phosphate (1,5AG6P) caused neutropenia in a glucose-6-phosphatase 3 (G6PC3)-deficient mouse model and in 2 rare diseases (GSD-Ib and G6PC3 deficiency) led us to repurpose the widely used antidiabetic drug empagliflozin, an inhibitor of the renal glucose cotransporter sodium glucose cotransporter 2 (SGLT2). Off-label use of empagliflozin in 4 GSD-Ib patients with incomplete response to granulocyte colony-stimulating factor (GCSF) treatment decreased serum 1,5AG and neutrophil 1,5AG6P levels within 1 month. Clinically, symptoms of frequent infections, mucosal lesions, and inflammatory bowel disease resolved, and no symptomatic hypoglycemia was observed. GCSF could be discontinued in 2 patients and tapered by 57% and 81%, respectively, in the other 2. The fluctuating neutrophil numbers in all patients were increased and stabilized. We further demonstrated improved neutrophil function: normal oxidative burst (in 3 of 3 patients tested), corrected protein glycosylation (2 of 2), and normal neutrophil chemotaxis (1 of 1), and bactericidal activity (1 of 1) under treatment. In summary, the glucose-lowering SGLT2 inhibitor empagliflozin, used for type 2 diabetes, was successfully repurposed for treating neutropenia and neutrophil dysfunction in the rare inherited metabolic disorder GSD-Ib without causing symptomatic hypoglycemia. We ascribe this to an improvement in neutrophil function resulting from the reduction of the intracellular concentration of 1,5AG6P.
Asunto(s)
Compuestos de Bencidrilo/uso terapéutico , Glucósidos/uso terapéutico , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Hexosafosfatos/sangre , Neutropenia/tratamiento farmacológico , Neutrófilos/patología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Compuestos de Bencidrilo/efectos adversos , Glucemia/análisis , Quimiotaxis de Leucocito/efectos de los fármacos , Preescolar , Reposicionamiento de Medicamentos , Resistencia a Medicamentos , Femenino , Glucósidos/efectos adversos , Enfermedad del Almacenamiento de Glucógeno Tipo I/sangre , Enfermedad del Almacenamiento de Glucógeno Tipo I/inmunología , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Granulocitos/química , Humanos , Recién Nacido , Proteína 2 de la Membrana Asociada a los Lisosomas/sangre , Masculino , Neutropenia/sangre , Uso Fuera de lo Indicado , Estallido Respiratorio/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Adulto JovenRESUMEN
Neutropenia and neutrophil dysfunction found in deficiencies in G6PC3 and in the glucose-6-phosphate transporter (G6PT/SLC37A4) are due to accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P), an inhibitor of hexokinase made from 1,5-anhydroglucitol (1,5-AG), an abundant polyol present in blood. Lowering blood 1,5-AG with an SGLT2 inhibitor greatly improved neutrophil counts and function in G6PC3-deficient mice and in patients with G6PT-deficiency. We evaluate this treatment in two G6PC3-deficient children. While neutropenia was severe in one child (PT1), which was dependent on granulocyte cololony-stimulating factor (GCSF), it was significantly milder in the other one (PT2), which had low blood 1,5-AG levels and only required GCSF during severe infections. Treatment with the SGLT2-inhibitor empagliflozin decreased 1,5-AG in blood and 1,5-AG6P in neutrophils and improved (PT1) or normalized (PT2) neutrophil counts, allowing to stop GCSF. On empagliflozin, both children remained infection-free (>1 year - PT2; >2 years - PT1) and no side effects were reported. Remarkably, sequencing of SGLT5, the gene encoding the putative renal transporter for 1,5-AG, disclosed a rare heterozygous missense mutation in PT2, replacing the extremely conserved Arg401 by a histidine. The higher urinary clearance of 1,5-AG explains the more benign neutropenia and the outstanding response to empagliflozin treatment found in this child. Our data shows that SGLT2 inhibitors are an excellent alternative to treat the neutropenia present in G6PC3-deficiency.
Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo I , Neutropenia , Proteínas de Transporte de Sodio-Glucosa/metabolismo , Animales , Antiportadores/genética , Compuestos de Bencidrilo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Glucósidos/uso terapéutico , Enfermedad del Almacenamiento de Glucógeno Tipo I/tratamiento farmacológico , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Humanos , Ratones , Proteínas de Transporte de Monosacáridos/genética , Mutación , Neutropenia/tratamiento farmacológico , Neutropenia/genética , Monoéster Fosfórico Hidrolasas/genéticaRESUMEN
Neutropenia represents an important problem in patients with genetic deficiency in either the glucose-6-phosphate transporter of the endoplasmic reticulum (G6PT/SLC37A4) or G6PC3, an endoplasmic reticulum phosphatase homologous to glucose-6-phosphatase. While affected granulocytes show reduced glucose utilization, the underlying mechanism is unknown and causal therapies are lacking. Using a combination of enzymological, cell-culture, and in vivo approaches, we demonstrate that G6PT and G6PC3 collaborate to destroy 1,5-anhydroglucitol-6-phosphate (1,5AG6P), a close structural analog of glucose-6-phosphate and an inhibitor of low-KM hexokinases, which catalyze the first step in glycolysis in most tissues. We show that 1,5AG6P is made by phosphorylation of 1,5-anhydroglucitol, a compound normally present in human plasma, by side activities of ADP-glucokinase and low-KM hexokinases. Granulocytes from patients deficient in G6PC3 or G6PT accumulate 1,5AG6P to concentrations (â¼3 mM) that strongly inhibit hexokinase activity. In a model of G6PC3-deficient mouse neutrophils, physiological concentrations of 1,5-anhydroglucitol caused massive accumulation of 1,5AG6P, a decrease in glucose utilization, and cell death. Treating G6PC3-deficient mice with an inhibitor of the kidney glucose transporter SGLT2 to lower their blood level of 1,5-anhydroglucitol restored a normal neutrophil count, while administration of 1,5-anhydroglucitol had the opposite effect. In conclusion, we show that the neutropenia in patients with G6PC3 or G6PT mutations is a metabolite-repair deficiency, caused by a failure to eliminate the nonclassical metabolite 1,5AG6P.
Asunto(s)
Antiportadores/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Neutropenia/metabolismo , Fosforilación/fisiología , Animales , Muerte Celular/fisiología , Línea Celular , Retículo Endoplásmico/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Ratas WistarRESUMEN
Ethylmalonic acid (EMA) is a major and potentially cytotoxic metabolite associated with short-chain acyl-CoA dehydrogenase (SCAD) deficiency, a condition whose status as a disease is uncertain. Unexplained high EMA is observed in some individuals with complex neurological symptoms, who carry the SCAD gene (ACADS) variants, c.625G>A and c.511C>T. The variants have a high allele frequency in the general population, but are significantly overrepresented in individuals with elevated EMA. This has led to the idea that these variants need to be associated with variants in other genes to cause hyperexcretion of ethylmalonic acid and possibly a diseased state. Ethylmalonyl-CoA decarboxylase (ECHDC1) has been described and characterized as an EMA metabolite repair enzyme, however, its clinical relevance has never been investigated. In this study, we sequenced the ECHDC1 gene (ECHDC1) in 82 individuals, who were reported with unexplained high EMA levels due to the presence of the common ACADS variants only. Three individuals with ACADS c.625G>A variants were found to be heterozygous for ECHDC1 loss-of-function variants. Knockdown experiments of ECHDC1, in healthy human cells with different ACADS c.625G>A genotypes, showed that ECHDC1 haploinsufficiency and homozygosity for the ACADS c.625G>A variant had a synergistic effect on cellular EMA excretion. This study reports the first cases of ECHDC1 gene defects in humans and suggests that ECHDC1 may be involved in elevated EMA excretion in only a small group of individuals with the common ACADS variants. However, a direct link between ECHDC1/ACADS deficiency, EMA and disease could not be proven.
Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Variación Genética , Errores Innatos del Metabolismo Lipídico/genética , Malonatos/metabolismo , Enzima Bifuncional Peroxisomal/genética , Acil-CoA Deshidrogenasa/genética , Alelos , Frecuencia de los Genes , Genotipo , Células HEK293 , Humanos , Deficiencia Múltiple de Acil Coenzima A DeshidrogenasaRESUMEN
OBJECTIVE: SLC13A3 encodes the plasma membrane Na+ /dicarboxylate cotransporter 3, which imports inside the cell 4 to 6 carbon dicarboxylates as well as N-acetylaspartate (NAA). SLC13A3 is mainly expressed in kidney, in astrocytes, and in the choroid plexus. We describe two unrelated patients presenting with acute, reversible (and recurrent in one) neurological deterioration during a febrile illness. Both patients exhibited a reversible leukoencephalopathy and a urinary excretion of α-ketoglutarate (αKG) that was markedly increased and persisted over time. In one patient, increased concentrations of cerebrospinal fluid NAA and dicarboxylates (including αKG) were observed. Extensive workup was unsuccessful, and a genetic cause was suspected. METHODS: Whole exome sequencing (WES) was performed. Our teams were connected through GeneMatcher. RESULTS: WES analysis revealed variants in SLC13A3. A homozygous missense mutation (p.Ala254Asp) was found in the first patient. The second patient was heterozygous for another missense mutation (p.Gly548Ser) and an intronic mutation affecting splicing as demonstrated by reverse transcriptase polymerase chain reaction performed in muscle tissue (c.1016 + 3A > G). Mutations and segregation were confirmed by Sanger sequencing. Functional studies performed on HEK293T cells transiently transfected with wild-type and mutant SLC13A3 indicated that the missense mutations caused a marked reduction in the capacity to transport αKG, succinate, and NAA. INTERPRETATION: SLC13A3 deficiency causes acute and reversible leukoencephalopathy with marked accumulation of αKG. Urine organic acids (especially αKG and NAA) and SLC13A3 mutations should be screened in patients presenting with unexplained reversible leukoencephalopathy, for which SLC13A3 deficiency is a novel differential diagnosis. ANN NEUROL 2019;85:385-395.
Asunto(s)
Ácido Aspártico/análogos & derivados , Ácidos Cetoglutáricos/metabolismo , Leucoencefalopatías/genética , Simportadores/genética , Adolescente , Ácido Aspártico/líquido cefalorraquídeo , Ácido Aspártico/metabolismo , Preescolar , Femenino , Células HEK293 , Humanos , Ácidos Cetoglutáricos/líquido cefalorraquídeo , Ácidos Cetoglutáricos/orina , Leucoencefalopatías/metabolismo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Mutación Missense , Linaje , Infecciones del Sistema Respiratorio , Ácido Succínico/metabolismo , Simportadores/metabolismo , Tonsilitis , Secuenciación del ExomaRESUMEN
Steady-state enzyme kinetics typically relies on the measurement of 'initial rates', obtained when the substrate is not significantly consumed and the amount of product formed is negligible. Although initial rates are usually faster than those measured later in the reaction time-course, sometimes the speed of the reaction appears instead to increase with time, reaching a steady level only after an initial delay or 'lag phase'. This behavior needs to be interpreted by the experimentalists. To assist interpretation, this article analyzes the many reasons why, during an enzyme assay, the observed rate can be slow in the beginning and then progressively accelerate. The possible causes range from trivial artifacts to instances in which deeper mechanistic or biophysical factors are at play. We provide practical examples for most of these causes, based firstly on experiments conducted with ornithine δ-aminotransferase and with other pyridoxal-phosphate dependent enzymes that have been studied in our laboratory. On the side to this survey, we provide evidence that the product of the ornithine δ-aminotransferase reaction, glutamate 5-semialdehyde, cyclizes spontaneously to pyrroline 5-carboxylate with a rate constant greater than 3 s-1.
Asunto(s)
Pruebas de Enzimas/métodos , Enzimas/química , Artefactos , Cinética , Ornitina-Oxo-Ácido Transaminasa/química , Especificidad por SustratoRESUMEN
It is traditionally assumed that enzymes of intermediary metabolism are extremely specific and that this is sufficient to prevent the production of useless and/or toxic side-products. Recent work indicates that this statement is not entirely correct. In reality, enzymes are not strictly specific, they often display weak side activities on intracellular metabolites (substrate promiscuity) that resemble their physiological substrate or slowly catalyse abnormal reactions on their physiological substrate (catalytic promiscuity). They thereby produce non-classical metabolites that are not efficiently metabolised by conventional enzymes. In an increasing number of cases, metabolite repair enzymes are being discovered that serve to eliminate these non-classical metabolites and prevent their accumulation. Metabolite repair enzymes also eliminate non-classical metabolites that are formed through spontaneous (ie, not enzyme-catalysed) reactions. Importantly, genetic deficiencies in several metabolite repair enzymes lead to 'inborn errors of metabolite repair', such as L-2-hydroxyglutaric aciduria, D-2-hydroxyglutaric aciduria, 'ubiquitous glucose-6-phosphatase' (G6PC3) deficiency, the neutropenia present in Glycogen Storage Disease type Ib or defects in the enzymes that repair the hydrated forms of NADH or NADPH. Metabolite repair defects may be difficult to identify as such, because the mutated enzymes are non-classical enzymes that act on non-classical metabolites, which in some cases accumulate only inside the cells, and at rather low, yet toxic, concentrations. It is therefore likely that many additional metabolite repair enzymes remain to be discovered and that many diseases of metabolite repair still await elucidation.