Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioinformatics ; 38(18): 4403-4405, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35861394

RESUMEN

SUMMARY: The ever-increasing number of sequenced genomes necessitates the development of pangenomic approaches for comparative genomics. Introduced in 2016, PanTools is a platform that allows pangenome construction, homology grouping and pangenomic read mapping. The use of graph database technology makes PanTools versatile, applicable from small viral genomes like SARS-CoV-2 up to large plant or animal genomes like tomato or human. Here, we present our third major update to PanTools that enables the integration of functional annotations and provides both gene-level analyses and phylogenetics. AVAILABILITY AND IMPLEMENTATION: PanTools is implemented in Java 8 and released under the GNU GPLv3 license. Software and documentation are available at https://git.wur.nl/bioinformatics/pantools. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Filogenia , SARS-CoV-2/genética , Programas Informáticos , Genoma Viral
2.
BMC Genomics ; 22(1): 265, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33849459

RESUMEN

BACKGROUND: Bacterial plant pathogens of the Pectobacterium genus are responsible for a wide spectrum of diseases in plants, including important crops such as potato, tomato, lettuce, and banana. Investigation of the genetic diversity underlying virulence and host specificity can be performed at genome level by using a comprehensive comparative approach called pangenomics. A pangenomic approach, using newly developed functionalities in PanTools, was applied to analyze the complex phylogeny of the Pectobacterium genus. We specifically used the pangenome to investigate genetic differences between virulent and avirulent strains of P. brasiliense, a potato blackleg causing species dominantly present in Western Europe. RESULTS: Here we generated a multilevel pangenome for Pectobacterium, comprising 197 strains across 19 species, including type strains, with a focus on P. brasiliense. The extensive phylogenetic analysis of the Pectobacterium genus showed robust distinct clades, with most detail provided by 452,388 parsimony-informative single-nucleotide polymorphisms identified in single-copy orthologs. The average Pectobacterium genome consists of 47% core genes, 1% unique genes, and 52% accessory genes. Using the pangenome, we zoomed in on differences between virulent and avirulent P. brasiliense strains and identified 86 genes associated to virulent strains. We found that the organization of genes is highly structured and linked with gene conservation, function, and transcriptional orientation. CONCLUSION: The pangenome analysis demonstrates that evolution in Pectobacteria is a highly dynamic process, including gene acquisitions partly in clusters, genome rearrangements, and loss of genes. Pectobacterium species are typically not characterized by a set of species-specific genes, but instead present themselves using new gene combinations from the shared gene pool. A multilevel pangenomic approach, fusing DNA, protein, biological function, taxonomic group, and phenotypes, facilitates studies in a flexible taxonomic context.


Asunto(s)
Pectobacterium , Solanum tuberosum , Europa (Continente) , Pool de Genes , Pectobacterium/genética , Filogenia , Enfermedades de las Plantas , Solanum tuberosum/genética
3.
Mol Plant Microbe Interact ; 32(11): 1536-1546, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31246152

RESUMEN

Synchytrium endobioticum is an obligate biotrophic fungus of division Chytridiomycota. It causes potato wart disease, has a worldwide quarantine status and is included on the Health and Human Services and United States Department of Agriculture Select Agent list. S. endobioticum isolates are grouped in pathotypes based on their ability to evade host resistance in a set of differential potato varieties. Thus far, 39 pathotypes are reported. A single dominant gene (Sen1) governs pathotype 1 (D1) resistance and we anticipated that the underlying molecular model would involve a pathogen effector (AvrSen1) that is recognized by the host. The S. endobioticum-specific secretome of 14 isolates representing six different pathotypes was screened for effectors specifically present in pathotype 1 (D1) isolates but absent in others. We identified a single AvrSen1 candidate. Expression of this candidate in potato Sen1 plants showed a specific hypersensitive response (HR), which cosegregated with the Sen1 resistance in potato populations. No HR was obtained with truncated genes found in pathotypes that evaded recognition by Sen1. These findings established that our candidate gene was indeed Avrsen1. The S. endobioticum AvrSen1 is a single-copy gene and encodes a 376-amino-acid protein without predicted function or functional domains, and is the first effector gene identified in Chytridiomycota, an extremely diverse yet underrepresented basal lineage of fungi.


Asunto(s)
Quitridiomicetos , Genes Fúngicos , Solanum tuberosum , Quitridiomicetos/clasificación , Quitridiomicetos/genética , Quitridiomicetos/inmunología , Genes Fúngicos/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología
4.
PLoS Genet ; 12(8): e1005876, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27512984

RESUMEN

Black Sigatoka or black leaf streak disease, caused by the Dothideomycete fungus Pseudocercospora fijiensis (previously: Mycosphaerella fijiensis), is the most significant foliar disease of banana worldwide. Due to the lack of effective host resistance, management of this disease requires frequent fungicide applications, which greatly increase the economic and environmental costs to produce banana. Weekly applications in most banana plantations lead to rapid evolution of fungicide-resistant strains within populations causing disease-control failures throughout the world. Given its extremely high economic importance, two strains of P. fijiensis were sequenced and assembled with the aid of a new genetic linkage map. The 74-Mb genome of P. fijiensis is massively expanded by LTR retrotransposons, making it the largest genome within the Dothideomycetes. Melting-curve assays suggest that the genomes of two closely related members of the Sigatoka disease complex, P. eumusae and P. musae, also are expanded. Electrophoretic karyotyping and analyses of molecular markers in P. fijiensis field populations showed chromosome-length polymorphisms and high genetic diversity. Genetic differentiation was also detected using neutral markers, suggesting strong selection with limited gene flow at the studied geographic scale. Frequencies of fungicide resistance in fungicide-treated plantations were much higher than those in untreated wild-type P. fijiensis populations. A homologue of the Cladosporium fulvum Avr4 effector, PfAvr4, was identified in the P. fijiensis genome. Infiltration of the purified PfAVR4 protein into leaves of the resistant banana variety Calcutta 4 resulted in a hypersensitive-like response. This result suggests that Calcutta 4 could carry an unknown resistance gene recognizing PfAVR4. Besides adding to our understanding of the overall Dothideomycete genome structures, the P. fijiensis genome will aid in developing fungicide treatment schedules to combat this pathogen and in improving the efficiency of banana breeding programs.


Asunto(s)
Ascomicetos/genética , Resistencia a la Enfermedad/genética , Musa/genética , Enfermedades de las Plantas/genética , Hojas de la Planta/genética , Ascomicetos/patogenicidad , Cruzamiento , Cromosomas Fúngicos/genética , Variación Genética , Genoma Fúngico , Genotipo , Musa/crecimiento & desarrollo , Musa/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Retroelementos/genética
5.
Plant Dis ; 103(4): 645-655, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30777801

RESUMEN

Xylella fastidiosa is a heterogenous gram-negative bacterial plant pathogen with a wide host range covering over 300 plant species. Since 2013, in Europe, the presence of the pathogen is increasing in a part of the Mediterranean area, but it causes in particular severe disease problems in olive orchards in the Southern part of Italy. Various subspecies of the pathogen were also diagnosed in natural outbreaks and intercepted ornamental plants in Europe, among them Olea europaea, Coffea arabica, and Nerium oleander. The host range of the pathogen can vary, depending on the subspecies and even the strain. The availability of fast and reliable diagnostic tools is indispensable in management strategies to control diseases caused by X. fastidiosa. To improve the reliability of the TaqMan assay, currently widely used in surveys, a triplex TaqMan assay was developed in which two specific and sensitive TaqMan assays, previously designed for X. fastidiosa, were combined with an internal control. The triplex assay exhibited the same diagnostic sensitivity as the simplex assays. In addition, the usefulness of a metagenomic approach using next-generation sequencing (NGS) was demonstrated, in which total DNA extracted from plant material was sequenced. DNA extracts from plant material free of X. fastidiosa, from artificially inoculated hosts plants or from naturally infected plants sampled in France, Spain, and Italy, or intercepted in Austria and the Netherlands, were analyzed for the presence of X. fastidiosa using the metagenomic approach. In all samples, even in samples with a low infection level, but not in the pathogen-free samples, DNA reads were detected specific for X. fastidiosa. In most cases, the pathogen could be identified to the subspecies level, and for one sample even the whole genome could be assembled and the sequence type could be determined. All results of NGS-analyzed samples were confirmed with the triplex TaqMan polymerase chain reaction and loop-mediated isothermal amplification.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Enfermedades de las Plantas , Análisis de Secuencia , Xylella , Europa (Continente) , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Reproducibilidad de los Resultados , Xylella/genética , Xylella/fisiología
6.
BMC Evol Biol ; 18(1): 136, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30200892

RESUMEN

BACKGROUND: Chytridiomycota species (chytrids) belong to a basal lineage in the fungal kingdom. Inhabiting terrestrial and aquatic environments, most are free-living saprophytes but several species cause important diseases: e.g. Batrachochytrium dendrobatidis, responsible for worldwide amphibian decline; and Synchytrium endobioticum, causing potato wart disease. S. endobioticum has an obligate biotrophic lifestyle and isolates can be further characterized as pathotypes based on their virulence on a differential set of potato cultivars. Quarantine measures have been implemented globally to control the disease and prevent its spread. We used a comparative approach using chytrid mitogenomes to determine taxonomical relationships and to gain insights into the evolution and recent history of introductions of this plant pathogen. RESULTS: We assembled and annotated the complete mitochondrial genome of 30 S. endobioticum isolates and generated mitochondrial genomes for five additional chytrid species. The mitochondrial genome of S. endobioticum is linear with terminal inverted repeats which was validated by tailing and PCR amplifying the telomeric ends. Surprisingly, no conservation in organisation and orientation of mitochondrial genes was observed among the Chytridiomycota except for S. endobioticum and its sister species Synchytrium microbalum. However, the mitochondrial genome of S. microbalum is circular and comprises only a third of the 72.9 Kbp found for S. endobioticum suggesting recent linearization and expansion. Four mitochondrial lineages were identified in the S. endobioticum mitochondrial genomes. Several pathotypes occur in different lineages, suggesting that these have emerged independently. In addition, variations for polymorphic sites in the mitochondrial genome of individual isolates were observed demonstrating that S. endobioticum isolates represent a community of different genotypes. Such communities were shown to be complex and stable over time, but we also demonstrate that the use of semi-resistant potato cultivars triggers a rapid shift in the mitochondrial haplotype associated with increased virulence. CONCLUSIONS: Mitochondrial genomic variation shows that S. endobioticum has been introduced into Europe multiple times, that several pathotypes emerged multiple times, and that isolates represent communities of different genotypes. Our study represents the most comprehensive dataset of chytrid mitogenomes, which provides new insights into the extraordinary dynamics and evolution of mitochondrial genomes involving linearization, expansion and reshuffling.


Asunto(s)
Evolución Biológica , Quitridiomicetos/genética , Genoma Mitocondrial , Plantas/microbiología , Animales , Teorema de Bayes , Quitridiomicetos/patogenicidad , ADN Mitocondrial/genética , Europa (Continente) , Variación Genética , Haplotipos/genética , Anotación de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/microbiología , Cuarentena , Reproducibilidad de los Resultados , Especificidad de la Especie , Virulencia/genética
7.
PLoS Comput Biol ; 12(6): e1004753, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27308864

RESUMEN

GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to assemble specific genomic regions from NGS data. This approach is especially useful when dealing with multi copy regions, such as mitochondrial genome and the rDNA repeat region, parts of the genome that are often neglected or poorly assembled, although they contain interesting information from phylogenetic or epidemiologic perspectives, but also single copy regions can be assembled. The program is capable of targeting multiple regions within a single run. Furthermore, GRAbB can be used to extract specific loci from NGS data, based on homology, like sequences that are used for barcoding. To make the assembly specific, a known part of the region, such as the sequence of a PCR amplicon or a homologous sequence from a related species must be specified. By assembling only the region of interest, the assembly process is computationally much less demanding and may lead to assemblies of better quality. In this study the different applications and functionalities of the program are demonstrated such as: exhaustive assembly (rDNA region and mitochondrial genome), extracting homologous regions or genes (IGS, RPB1, RPB2 and TEF1a), as well as extracting multiple regions within a single run. The program is also compared with MITObim, which is meant for the exhaustive assembly of a single target based on a similar query sequence. GRAbB is shown to be more efficient than MITObim in terms of speed, memory and disk usage. The other functionalities (handling multiple targets simultaneously and extracting homologous regions) of the new program are not matched by other programs. The program is available with explanatory documentation at https://github.com/b-brankovics/grabb. GRAbB has been tested on Ubuntu (12.04 and 14.04), Fedora (23), CentOS (7.1.1503) and Mac OS X (10.7). Furthermore, GRAbB is available as a docker repository: brankovics/grabb (https://hub.docker.com/r/brankovics/grabb/).


Asunto(s)
Genómica/métodos , Programas Informáticos , Algoritmos , Biología Computacional , Simulación por Computador , ADN de Hongos/genética , ADN Ribosómico/genética , Fusarium/genética , Genoma Fúngico , Genoma Mitocondrial , Genómica/estadística & datos numéricos , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos
8.
Fungal Genet Biol ; 89: 29-36, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26775250

RESUMEN

Fungal natural products possess biological activities that are of great value to medicine, agriculture and manufacturing. Recent metagenomic studies accentuate the vastness of fungal taxonomic diversity, and the accompanying specialized metabolic diversity offers a great and still largely untapped resource for natural product discovery. Although fungal natural products show an impressive variation in chemical structures and biological activities, their biosynthetic pathways share a number of key characteristics. First, genes encoding successive steps of a biosynthetic pathway tend to be located adjacently on the chromosome in biosynthetic gene clusters (BGCs). Second, these BGCs are often are located on specific regions of the genome and show a discontinuous distribution among evolutionarily related species and isolates. Third, the same enzyme (super)families are often involved in the production of widely different compounds. Fourth, genes that function in the same pathway are often co-regulated, and therefore co-expressed across various growth conditions. In this mini-review, we describe how these partly interlinked characteristics can be exploited to computationally identify BGCs in fungal genomes and to connect them to their products. Particular attention will be given to novel algorithms to identify unusual classes of BGCs, as well as integrative pan-genomic approaches that use a combination of genomic and metabolomic data for parallelized natural product discovery across multiple strains. Such novel technologies will not only expedite the natural product discovery process, but will also allow the assembly of a high-quality toolbox for the re-design or even de novo design of biosynthetic pathways using synthetic biology approaches.


Asunto(s)
Productos Biológicos , Biología Computacional , Hongos/genética , Ingeniería Genética , Genoma Fúngico , Productos Biológicos/aislamiento & purificación , Vías Biosintéticas/genética , Hongos/metabolismo , Ingeniería Genética/métodos , Genómica , Familia de Multigenes
9.
Phytopathology ; 106(6): 636-44, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26828229

RESUMEN

Synchytrium endobioticum is the fungal agent causing potato wart disease. Because of its severity and persistence, quarantine measures are enforced worldwide to avoid the spread of this disease. Molecular markers exist for species-specific detection of this pathogen, yet markers to study the intraspecific genetic diversity of S. endobioticum were not available. Whole-genome sequence data from Dutch pathotype 1 isolate MB42 of S. endobioticum were mined for perfect microsatellite motifs. Of the 62 selected microsatellites, 21 could be amplified successfully and displayed moderate levels of polymorphism in 22 S. endobioticum isolates from different countries. Nineteen multilocus genotypes were observed, with only three isolates from Canada displaying identical profiles. The majority of isolates from Canada clustered genetically. In contrast, most isolates collected in Europe show no genetic clustering associated with their geographic origin. S. endobioticum isolates with the same pathotype displayed highly variable genotypes and none of the microsatellite markers correlated with a specific pathotype. The markers developed in this study can be used to assess intraspecific genetic diversity of S. endobioticum and allow track and trace of genotypes that will generate a better understanding of the migration and spread of this important fungal pathogen and support management of this disease.


Asunto(s)
Quitridiomicetos/genética , Repeticiones de Microsatélite , Enfermedades de las Plantas/microbiología , Polimorfismo Genético , Solanum tuberosum/microbiología , ADN de Hongos , Genoma Fúngico , Genotipo , Filogenia
10.
Fungal Genet Biol ; 79: 42-53, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26092789

RESUMEN

Zymoseptoria tritici is an economically important pathogen of wheat. However, the molecular basis of pathogenicity on wheat is still poorly understood. Here, we present a global survey of the proteins secreted by this fungus in the apoplast of resistant (cv. Shafir) and susceptible (cv. Obelisk) wheat cultivars after inoculation with reference Z. tritici strain IPO323. The fungal proteins present in apoplastic fluids were analyzed by gel electrophoresis and by data-independent acquisition liquid chromatography/mass spectrometry (LC/MS(E)) combined with data-dependent acquisition LC-MS/MS. Subsequent mapping mass spectrometry-derived peptide sequence data against the genome sequence of strain IPO323 identified 665 peptides in the MS(E) and 93 in the LC-MS/MS mode that matched to 85 proteins. The identified fungal proteins, including cell-wall degrading enzymes and proteases, might function in pathogenicity, but the functions of many remain unknown. Most fungal proteins accumulated in cv. Obelisk at the onset of necrotrophy. This inventory provides an excellent basis for future detailed studies on the role of these genes and their encoded proteins during pathogenesis in wheat.


Asunto(s)
Ascomicetos/química , Proteínas Fúngicas/análisis , Enfermedades de las Plantas/microbiología , Proteoma/análisis , Triticum/microbiología , Ascomicetos/aislamiento & purificación , Cromatografía Liquida , Electroforesis , Espectrometría de Masas , Espectrometría de Masas en Tándem
11.
Fungal Genet Biol ; 79: 54-62, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26092790

RESUMEN

Culture filtrates (CFs) of the fungal wheat pathogen Zymoseptoria tritici were assayed for necrosis-inducing activity after infiltration in leaves of various wheat cultivars. Active fractions were partially purified and characterized. The necrosis-inducing factors in CFs are proteinaceous, heat stable and their necrosis-inducing activity is temperature and light dependent. The in planta activity of CFs was tested by a time series of proteinase K (PK) co-infiltrations, which was unable to affect activity 30min after CF infiltrations. This suggests that the necrosis inducing proteins (NIPs) are either absent from the apoplast and likely actively transported into mesophyll cells or protected from the protease by association with a receptor. Alternatively, plant cell death signaling pathways might be fully engaged during the first 30min and cannot be reversed even after PK treatment. Further fractionation of the CFs with the highest necrosis-inducing activity involved fast performance liquid chromatography, SDS-PAGE and mass spectrometry. This revealed that most of the proteins present in the fractions have not been described before. The two most prominent ZtNIP encoding candidates were heterologously expressed in Pichia pastoris and subsequent infiltration assays showed their differential activity in a range of wheat cultivars.


Asunto(s)
Ascomicetos/química , Proteínas Fúngicas/análisis , Necrosis/microbiología , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Factores de Virulencia/análisis , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Proteínas Fúngicas/química , Luz , Espectrometría de Masas , Estabilidad Proteica , Temperatura , Factores de Virulencia/química
12.
PLoS Genet ; 7(6): e1002070, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21695235

RESUMEN

The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicola was sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed "mesosynteny" is very different from synteny seen between other organisms. A surprising feature of the M. graminicola genome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors.


Asunto(s)
Ascomicetos/genética , Cromosomas Fúngicos/genética , Genoma Fúngico/genética , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Reordenamiento Génico , Enfermedades de las Plantas/microbiología , Sintenía , Triticum/microbiología
13.
PLoS One ; 19(2): e0296842, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38346034

RESUMEN

Potato wart disease is caused by the obligate fungal pathogen Synchytrium endobioticum. DNA extraction from compost, purified spores and crude wart tissue derived from tuber galls of infected potatoes often results in low S. endobioticum DNA concentration or highly contaminated with DNA coming from other microorganisms and the potato host. Therefore, Illumina sequencing of these samples generally results in suboptimal recovery of the nuclear genome sequences of S. endobioticum. A hybridization-based target enrichment protocol was developed to strongly enhance the recovery of S. endobioticum DNA while off-target organisms DNA remains uncaptured. The design strategy involved creating a set of 180,000 molecular baits targeting both gene and non-gene regions of S. endobioticum. The baits were applied to whole genome amplified DNA samples of various S. endobioticum pathotypes (races) in compost, from purified spores and crude wart tissue samples. This was followed by Illumina sequencing and bioinformatic analyses. Compared to non-enriched samples, target enriched samples: 1) showed a significant increase in the proportion of sequenced bases mapped to the S. endobioticum nuclear genome, especially for crude wart tissue samples; 2) yielded sequencing data with higher and better nuclear genome coverage; 3) biased genome assembly towards S. endobioticum sequences, yielding smaller assembly sizes but higher representation of putative S. endobioticum contigs; 4) showed an increase in the number of S. endobioticum genes detected in the genome assemblies. Our hybridization-based target enrichment protocol offers a valuable tool for enhancing genome sequencing and NGS-based molecular detection of S. endobioticum, especially in difficult samples.


Asunto(s)
Quitridiomicetos , Verrugas , Quitridiomicetos/genética , Secuencia de Bases , ADN
14.
Pest Manag Sci ; 79(3): 989-995, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36309944

RESUMEN

BACKGROUND: Resistance to rodenticides has been reported globally and poses a considerable problem for efficacy in pest control. The most-documented resistance to rodenticides in commensal rodents is associated with mutations in the Vkorc1 gene, in particular in codon 139. Resistance to anticoagulant rodenticides has been reported in the Netherlands since 1989. A study from 2013 showed that 25% of 169 Norway rats (Rattus norvegicus) had a mutation at codon 139 of the Vkorc1 gene. To gain insight in the current status of rodenticide resistance amongst R. norvegicus and house mice Mus musculus in the Netherlands, we tested these rodents for mutations in codon 139 of the Vkorc1 gene. In addition, we collected data from pest controllers on their use of rodenticides and experience with rodenticide resistance. RESULTS: A total of 1801 rodent samples were collected throughout the country consisting of 1404 R. norvegicus and 397 M. musculus. In total, 15% of R. norvegicus [95% confidence interval (CI): 13-17%] and 38% of M. musculus (95% CI: 33-43%) carried a genetic mutation at codon 139 of the Vkorc1 gene. CONCLUSION: This study demonstrates genetic mutations at codon 139 of the Vkorc1 gene in M. musculus in the Netherlands. Resistance to anticoagulant rodenticides is present in R. norvegicus and M. musculus in multiple regions in the Netherlands. The results of this comprehensive study provide a baseline and facilitate trend analyses of Vkorc1 codon 139 mutations and evaluation of integrated pest management (IPM) strategies as these are enrolled in the Netherlands. © 2022 The Dutch Pest and Wildlife. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Rodenticidas , Ratones , Ratas , Animales , Rodenticidas/farmacología , Países Bajos , Vitamina K Epóxido Reductasas/genética , Mutación , Anticoagulantes/farmacología , Codón , Resistencia a Medicamentos/genética , Proteínas de la Membrana/genética
15.
Microorganisms ; 11(8)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37630640

RESUMEN

P. brasiliense is an important bacterial pathogen causing blackleg (BL) in potatoes. Nevertheless, P. brasiliense is often detected in seed lots that do not develop any of the typical blackleg symptoms in the potato crop when planted. Field bioassays identified that P. brasiliense strains can be categorized into two distinct classes, some able to cause blackleg symptoms and some unable to do it. A comparative pangenomic approach was performed on 116 P. brasiliense strains, of which 15 were characterized as BL-causing strains and 25 as non-causative. In a genetically homogeneous clade comprising all BL-causing P. brasiliense strains, two genes only present in the BL-causing strains were identified, one encoding a predicted lysozyme inhibitor Lprl (LZI) and one encoding a putative Toll/interleukin-1 receptor (TIR) domain-containing protein. TaqMan assays for the specific detection of BL-causing P. brasiliense were developed and integrated with the previously developed generic P. brasiliense assay into a triplex TaqMan assay. This simultaneous detection makes the scoring more efficient as only a single tube is needed, and it is more robust as BL-causing strains of P. brasiliense should be positive for all three assays. Individual P. brasiliense strains were found to be either positive for all three assays or only for the P. brasiliense assay. In potato samples, the mixed presence of BL-causing and not BL-causing P. brasiliense strains was observed as shown by the difference in Ct value of the TaqMan assays. However, upon extension of the number of strains, it became clear that in recent years additional BL-causing lineages of P. brasiliense were detected for which additional assays must be developed.

16.
Theor Appl Genet ; 124(1): 125-42, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21912855

RESUMEN

Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola, is one of the most devastating foliar diseases of wheat. We screened five synthetic hexaploid wheats (SHs), 13 wheat varieties that represent the differential set of cultivars and two susceptible checks with a global set of 20 isolates and discovered exceptionally broad STB resistance in SHs. Subsequent development and analyses of recombinant inbred lines (RILs) from a cross between the SH M3 and the highly susceptible bread wheat cv. Kulm revealed two novel resistance loci on chromosomes 3D and 5A. The 3D resistance was expressed in the seedling and adult plant stages, and it controlled necrosis (N) and pycnidia (P) development as well as the latency periods of these parameters. This locus, which is closely linked to the microsatellite marker Xgwm494, was tentatively designated Stb16q and explained from 41 to 71% of the phenotypic variation at seedling stage and 28-31% in mature plants. The resistance locus on chromosome 5A was specifically expressed in the adult plant stage, associated with SSR marker Xhbg247, explained 12-32% of the variation in disease, was designated Stb17, and is the first unambiguously identified and named QTL for adult plant resistance to M. graminicola. Our results confirm that common wheat progenitors might be a rich source of new Stb resistance genes/QTLs that can be deployed in commercial breeding programs.


Asunto(s)
Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Triticum/genética , Adaptación Biológica , Mapeo Cromosómico , Cromosomas de las Plantas , Variación Genética , Genotipo , Escala de Lod , Fenotipo , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Triticum/fisiología
17.
Sci Rep ; 12(1): 10857, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35760985

RESUMEN

The rhizosphere, the region of soil surrounding roots of plants, is colonized by a unique population of Plant Growth Promoting Rhizobacteria (PGPR). Many important PGPR as well as plant pathogens belong to the genus Pseudomonas. There is, however, uncertainty on the divide between beneficial and pathogenic strains as previously thought to be signifying genomic features have limited power to separate these strains. Here we used the Genome properties (GP) common biological pathways annotation system and Machine Learning (ML) to establish the relationship between the genome wide GP composition and the plant-associated lifestyle of 91 Pseudomonas strains isolated from the rhizosphere and the phyllosphere representing both plant-associated phenotypes. GP enrichment analysis, Random Forest model fitting and feature selection revealed 28 discriminating features. A test set of 75 new strains confirmed the importance of the selected features for classification. The results suggest that GP annotations provide a promising computational tool to better classify the plant-associated lifestyle.


Asunto(s)
Pseudomonas , Rizosfera , Aprendizaje Automático , Raíces de Plantas/microbiología , Plantas , Pseudomonas/metabolismo , Microbiología del Suelo
18.
Mol Plant Pathol ; 23(4): 461-474, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35029012

RESUMEN

Potato wart disease is considered one of the most important quarantine pests for cultivated potato and is caused by the obligate biotrophic chytrid fungus Synchytrium endobioticum. This review integrates observations from early potato wart research and recent molecular, genetic, and genomic studies of the pathogen and its host potato. Taxonomy, epidemiology, pathology, and formation of new pathotypes are discussed, and a model for molecular S. endobioticum-potato interaction is proposed. TAXONOMY: Currently classified as kingdom: Fungi, phylum: Chytridiomycota, class: Chytridiomycetes, order: Chytridiales, family: Synchytriaceae, genus: Synchytrium, species: Synchytrium endobioticum, there is strong molecular support for Synchytriaceae to be transferred to the order Synchytriales. HOSTS AND DISEASE SYMPTOMS: Solanum tuberosum is the main host for S. endobioticum but other solanaceous species have been reported as alternative hosts. It is not known if these alternative hosts play a role in the survival of the pathogen in (borders of) infested fields. Disease symptoms on potato tubers are characterized by the warty cauliflower-like malformations that are the result of cell enlargement and cell multiplication induced by the pathogen. Meristematic tissue on tubers, stolons, eyes, sprouts, and inflorescences can be infected while the potato root system seems to be immune. PATHOTYPES: For S. endobioticum over 40 pathotypes, which are defined as groups of isolates with a similar response to a set of differential potato varieties, are described. Pathotypes 1(D1), 2(G1), 6(O1), and 18(T1) are currently regarded to be most widespread. However, with the current differential set other pathogen diversity largely remains undetected. PATHOGEN-HOST INTERACTION: A single effector has been described for S. endobioticum (AvrSen1), which is recognized by the potato Sen1 resistance gene product. This is also the first effector that has been described in Chytridiomycota, showing that in this fungal division resistance also fits the gene-for-gene concept. Although significant progress was made in the last decade in mapping wart disease resistance loci, not all resistances present in potato breeding germplasm could be identified. The use of resistant varieties plays an essential role in disease management.


Asunto(s)
Quitridiomicetos , Solanum tuberosum , Verrugas , Quitridiomicetos/genética , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología
19.
Theor Appl Genet ; 123(5): 741-54, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21655994

RESUMEN

The ascomycete Mycosphaerella graminicola is the causal agent of septoria tritici blotch (STB), one of the most destructive foliar diseases of bread and durum wheat globally, particularly in temperate humid areas. A screening of the French bread wheat cultivars Apache and Balance with 30 M. graminicola isolates revealed a pattern of resistant responses that suggested the presence of new genes for STB resistance. Quantitative trait loci (QTL) analysis of a doubled haploid (DH) population with five M. graminicola isolates in the seedling stage identified four QTLs on chromosomes 3AS, 1BS, 6DS and 7DS, and occasionally on 7DL. The QTL on chromosome 6DS flanked by SSR markers Xgpw5176 and Xgpw3087 is a novel QTL that now can be designated as Stb18. The QTLs on chromosomes 3AS and 1BS most likely represent Stb6 and Stb11, respectively, and the QTLs on chromosome 7DS are most probably identical with Stb4 and Stb5. However, the QTL identified on chromosome 7DL is expected to be a new Stb gene that still needs further characterization. Multiple isolates were used and show that not all isolates identify all QTLs, which clearly demonstrates the specificity in the M. graminicola-wheat pathosystem. QTL analyses were performed with various disease parameters. The development of asexual fructifications (pycnidia) in the characteristic necrotic blotches of STB, designated as parameter P, identified the maximum number of QTLs. All other parameters identified fewer but not different QTLs. The segregation of multiple QTLs in the Apache/Balance DH population enabled the identification of DH lines with single QTLs and multiple QTL combinations. Analyses of the marker data of these DH lines clearly demonstrated the positive effect of pyramiding QTLs to broaden resistance spectra as well as epistatic and additive interactions between these QTLs. Phenotyping of the Apache/Balance DH population in the field confirmed the presence of the QTLs that were identified in the seedling stage, but Stb18 was inconsistently expressed and might be particularly effective in young plants. In contrast, an additional QTL for STB resistance was identified on chromosome 2DS that is exclusively and consistently expressed in mature plants over locations and time, but it was also strongly related with earliness, tallness as well as resistance to Fusarium head blight. Although to date no Stb gene has been reported on chromosome 2D, the data provide evidence that this QTL is only indirectly related to STB resistance. This study shows that detailed genetic analysis of contemporary commercial bread wheat cultivars can unveil novel Stb genes that can be readily applied in marker-assisted breeding programs.


Asunto(s)
Ascomicetos/fisiología , Enfermedades de las Plantas/genética , Triticum/genética , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo , Triticum/microbiología
20.
Eukaryot Cell ; 8(7): 1001-13, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19411619

RESUMEN

We identified and functionally characterized genes encoding three Galpha proteins and one Gbeta protein in the dimorphic fungal wheat pathogen Mycosphaerella graminicola, which we designated MgGpa1, MgGpa2, MgGpa3, and MgGpb1, respectively. Sequence comparisons and phylogenetic analyses showed that MgGPA1 and MgGPA3 are most related to the mammalian Galpha(i) and Galpha(s) families, respectively, whereas MgGPA2 is not related to either of these families. On potato dextrose agar (PDA) and in yeast glucose broth (YGB), MgGpa1 mutants produced significantly longer spores than those of the wild type (WT), and these developed into unique fluffy mycelia in the latter medium, indicating that this gene negatively controls filamentation. MgGpa3 mutants showed more pronounced yeast-like growth accompanied with hampered filamentation and secreted a dark-brown pigment into YGB. Germ tubes emerging from spores of MgGpb1 mutants were wavy on water agar and showed a nested type of growth on PDA that was due to hampered filamentation, numerous cell fusions, and increased anastomosis. Intracellular cyclic AMP (cAMP) levels of MgGpb1 and MgGpa3 mutants were decreased, indicating that both genes positively regulate the cAMP pathway, which was confirmed because the WT phenotype was restored by adding cAMP to these mutant cultures. The cAMP levels in MgGpa1 mutants and the WT were not significantly different, suggesting that this gene might be dispensable for cAMP regulation. In planta assays showed that mutants of MgGpa1, MgGpa3, and MgGpb1 are strongly reduced in pathogenicity. We concluded that the heterotrimeric G proteins encoded by MgGpa3 and MgGpb1 regulate the cAMP pathway that is required for development and pathogenicity in M. graminicola.


Asunto(s)
Ascomicetos/crecimiento & desarrollo , AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Ascomicetos/genética , Ascomicetos/patogenicidad , Diferenciación Celular/genética , Aumento de la Célula , Proliferación Celular , AMP Cíclico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/aislamiento & purificación , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/aislamiento & purificación , Regulación Fúngica de la Expresión Génica/genética , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/aislamiento & purificación , Mutación/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Transducción de Señal/genética , Triticum/genética , Triticum/metabolismo , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA