Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Toxicol ; 97(6): 1739-1751, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36941454

RESUMEN

Validated in vitro assays for testing non-genotoxic carcinogenic potential of chemicals are currently not available. Consequently, the two-year rodent bioassay remains the gold standard method for the identification of these chemicals. Transcriptomic and proteomic analyses have provided a comprehensive understanding of the non-genotoxic carcinogenic processes, however, functional changes induced by effects at transcriptional and translational levels have not been addressed. The present study was set up to test a number of proposed in vitro biomarkers of non-genotoxic hepatocarcinogenicity at the functional level using a translational 3-dimensional model. Spheroid cultures of human hepatocytes and stellate cells were exposed to 5 genotoxic carcinogenic, 5 non-genotoxic carcinogenic, and 5 non-carcinogenic chemical compounds and assessed for oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, apoptosis, and inflammation. The spheroid model could capture many of these events triggered by the genotoxic carcinogenic chemicals, particularly aflatoxin B1 and hydroquinone. Nonetheless, no clear distinction could be made between genotoxic and non-genotoxic hepatocarcinogenicity. Therefore, spheroid cultures of human liver cells may be appropriate in vitro tools for mechanistic investigation of chemical-induced hepatocarcinogenicity, however, these mechanisms and their read-outs do not seem to be eligible biomarkers for detecting non-genotoxic carcinogenic chemicals.


Asunto(s)
Carcinógenos , Proteómica , Humanos , Técnicas de Cocultivo , Carcinógenos/toxicidad , Hígado , Hepatocitos , Pruebas de Carcinogenicidad/métodos
2.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563257

RESUMEN

Recently, a paradigm shift has been established for oncolytic viruses (OVs) as it was shown that the immune system plays an important role in the specific killing of tumor cells by OVs. OVs have the intrinsic capacity to provide the right signals to trigger anti-tumor immune responses, on the one hand by delivering virus-derived innate signals and on the other hand by inducing immunogenic cell death (ICD), which is accompanied by the release of various damage-associated molecules from infected tumor cells. Here, we determined the ICD-inducing capacity of Talimogene laherparepvec (T-VEC), a herpes simplex virus type 1 based OV, and benchmarked this to other previously described ICD (e.g., doxorubicin) and non-ICD inducing agents (cisplatin). Furthermore, we studied the capability of T-VEC to induce the maturation of human BDCA-1+ myeloid dendritic cells (myDCs). We found that T-VEC treatment exerts direct and indirect anti-tumor effects as it induces tumor cell death that coincides with the release of hallmark mediators of ICD, while simultaneously contributing to the maturation of BDCA-1+ myDCs. These results unequivocally cement OVs in the category of cancer immunotherapy.


Asunto(s)
Herpesvirus Humano 1 , Melanoma , Viroterapia Oncolítica , Virus Oncolíticos , Células Dendríticas/patología , Humanos , Muerte Celular Inmunogénica , Inmunoterapia/métodos , Melanoma/patología , Viroterapia Oncolítica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA