Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(2): 102892, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642181

RESUMEN

Bone morphogenetic proteins (BMPs) are secreted cytokines belonging to the transforming growth factor-ß superfamily. New therapeutic approaches based on BMP activity, particularly for cartilage and bone repair, have sparked considerable interest; however, a lack of understanding of their interaction pathways and the side effects associated with their use as biopharmaceuticals have dampened initial enthusiasm. Here, we used BMP-2 as a model system to gain further insight into both the relationship between structure and function in BMPs and the principles that govern affinity for their cognate antagonist Noggin. We produced BMP-2 and Noggin as inclusion bodies in Escherichia coli and developed simple and efficient protocols for preparing pure and homogeneous (in terms of size distribution) solutions of the native dimeric forms of the two proteins. The identity and integrity of the proteins were confirmed using mass spectrometry. Additionally, several in vitro cell-based assays, including enzymatic measurements, RT-qPCR, and matrix staining, demonstrated their biological activity during cell chondrogenic and hypertrophic differentiation. Furthermore, we characterized the simple 1:1 noncovalent interaction between the two ligands (KDca. 0.4 nM) using bio-layer interferometry and solved the crystal structure of the complex using X-ray diffraction methods. We identified the residues and binding forces involved in the interaction between the two proteins. Finally, results obtained with the BMP-2 N102D mutant suggest that Noggin is remarkably flexible and able to accommodate major structural changes at the BMP-2 level. Altogether, our findings provide insights into BMP-2 activity and reveal the molecular details of its interaction with Noggin.


Asunto(s)
Proteína Morfogenética Ósea 2 , Proteínas Portadoras , Condrogénesis , Citocinas , Humanos , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/farmacología , Cartílago/metabolismo , Diferenciación Celular , Citocinas/farmacología , Factor de Crecimiento Transformador beta/farmacología , Proteínas Portadoras/metabolismo
2.
J Exp Bot ; 75(8): 2280-2298, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38180875

RESUMEN

The Arabidopsis splicing factor serine/arginine-rich 45 (SR45) contributes to several biological processes. The sr45-1 loss-of-function mutant exhibits delayed root development, late flowering, unusual numbers of floral organs, shorter siliques with decreased seed sets, narrower leaves and petals, and altered metal distribution. SR45 bears a unique RNA recognition motif (RRM) flanked by one serine/arginine-rich (RS) domain on both sides. Here, we studied the function of each SR45 domains by examining their involvement in: (i) the spatial distribution of SR45; (ii) the establishment of a protein-protein interaction network including spliceosomal and exon-exon junction complex (EJC) components; and (iii) the RNA binding specificity. We report that the endogenous SR45 promoter is active during vegetative and reproductive growth, and that the SR45 protein localizes in the nucleus. We demonstrate that the C-terminal arginine/serine-rich domain is a determinant of nuclear localization. We show that the SR45 RRM domain specifically binds purine-rich RNA motifs via three residues (H101, H141, and Y143), and is also involved in protein-protein interactions. We further show that SR45 bridges both mRNA splicing and surveillance machineries as a partner of EJC core components and peripheral factors, which requires phosphoresidues probably phosphorylated by kinases from both the CLK and SRPK families. Our findings provide insights into the contribution of each SR45 domain to both spliceosome and EJC assemblies.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Exones , Factores de Empalme de ARN , Empalme del ARN , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Empalme del ARN/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
Appl Microbiol Biotechnol ; 108(1): 425, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042328

RESUMEN

Borrelia, spirochetes transmitted by ticks, are the etiological agents of numerous multisystemic diseases, such as Lyme borreliosis (LB) and tick-borne relapsing fever (TBRF). This study focuses on two surface proteins from two Borrelia subspecies involved in these diseases: CspZ, expressed by Borrelia burgdorferi sensu stricto (also named BbCRASP-2 for complement regulator-acquiring surface protein 2), and the factor H binding A (FhbA), expressed by Borrelia hermsii. Numerous subspecies of Borrelia, including these latter, are able to evade the immune defenses of a variety of potential vertebrate hosts in a number of ways. In this context, previous data suggested that both surface proteins play a role in the immune evasion of both Borrelia subspecies by interacting with key regulators of the alternative pathway of the human complement system, factor H (FH) and FH-like protein 1 (FHL-1). The recombinant proteins, CspZ and FhbA, were expressed in Escherichia coli and purified by one-step metal-affinity chromatography, with yields of 15 and 20 mg or pure protein for 1 L of cultured bacteria, respectively. The purity was evaluated by SDS-PAGE and HPLC and is close to about 95%. The mass of CspZ and FhbA was checked by mass spectrometry (MS). Proper folding of CspZ and FhbA was confirmed by circular dichroism (CD), and their biological activity, namely their interaction with purified FH from human serum (recombinant FH15-20 and recombinant FHL-1), was characterized by SPR. Such a study provides the basis for the biochemical characterization of the studied proteins and their biomolecular interactions which is a necessary prerequisite for the development of new approaches to improve the current diagnosis of LB and TBRF. KEY POINTS: • DLS, CD, SEC-MALS, NMR, HPLC, and MS are tools for protein quality assessment • Borrelia spp. possesses immune evasion mechanisms, including human host complement • CspZ and FhbA interact with high affinity (pM to nM) to human FH and rFHL-1.


Asunto(s)
Proteínas Bacterianas , Proteínas Recombinantes , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Humanos , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/inmunología , Cromatografía de Afinidad , Escherichia coli/genética , Escherichia coli/metabolismo , Borrelia/genética , Borrelia/metabolismo , Borrelia/inmunología , Factor H de Complemento/metabolismo , Factor H de Complemento/genética , Enfermedad de Lyme/microbiología , Proteínas Inactivadoras del Complemento C3b/genética , Proteínas Inactivadoras del Complemento C3b/metabolismo , Expresión Génica
4.
Am J Transplant ; 23(5): 649-658, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36773936

RESUMEN

As solid organ transplant recipients are at high risk of severe COVID-19 and respond poorly to primary SARS-CoV-2 mRNA vaccination, they have been prioritized for booster vaccination. However, an immunological correlate of protection has not been identified in this vulnerable population. We conducted a prospective monocentric cohort study of 65 kidney transplant recipients who received 3 doses of BNT162b2 mRNA vaccine. Associations among breakthrough infection (BTI), vaccine responses, and patient characteristics were explored in 54 patients. Symptomatic COVID-19 was diagnosed in 32% of kidney transplant recipients during a period of 6 months after booster vaccination. During this period, SARS-CoV-2 delta and omicron were the dominant variants in the general population. Univariate Analyses identified the avidity of SARS-CoV-2 receptor binding domain binding IgG, neutralizing antibodies, and SARS-CoV-2 S2-specific interferon gamma responses as correlates of protection against BTI. No demographic or clinical parameter correlated with the risk of BTI. In multivariate analysis, the risk of BTI was best predicted by neutralizing antibody and S2-specific interferon gamma responses. In conclusion, T cell responses may help compensate for the suboptimal antibody response to booster vaccination in kidney transplant recipients. Further studies are needed to confirm these findings.


Asunto(s)
COVID-19 , Trasplante de Riñón , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Vacuna BNT162 , Estudios de Cohortes , Interferón gamma , Trasplante de Riñón/efectos adversos , Estudios Prospectivos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infección Irruptiva , Inmunoglobulina G , Receptores de Trasplantes , Vacunación
5.
Antimicrob Agents Chemother ; 67(4): e0149922, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36892280

RESUMEN

Three soluble single-domain fragments derived from the unique variable region of camelid heavy-chain antibodies (VHHs) against the CMY-2 ß-lactamase behaved as inhibitors. The structure of the complex VHH cAbCMY-2(254)/CMY-2 showed that the epitope is close to the active site and that the CDR3 of the VHH protrudes into the catalytic site. The ß-lactamase inhibition pattern followed a mixed profile with a predominant noncompetitive component. The three isolated VHHs recognized overlapping epitopes since they behaved as competitive binders. Our study identified a binding site that can be targeted by a new class of ß-lactamase inhibitors designed on the sequence of the paratope. Furthermore, the use of mono- or bivalent VHH and rabbit polyclonal anti-CMY-2 antibodies enables the development of the first generation of enzyme-linked immunosorbent assay (ELISA) for the detection of CMY-2 produced by CMY-2-expressing bacteria, irrespective of resistotype.


Asunto(s)
Anticuerpos de Dominio Único , Animales , Conejos , Medicina de Precisión , beta-Lactamasas/genética , beta-Lactamasas/química , Inhibidores de beta-Lactamasas , Penicilinas , Anticuerpos , Epítopos
6.
Eur Biophys J ; 50(3-4): 473-490, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33611612

RESUMEN

Among various factors, the direct environment (e.g. pH, buffer components, salts, additives, etc.…) is known to have a crucial effect on both the stability and activity of proteins. In particular, proper buffer and pH conditions can improve their stability and function significantly during purification, storage and handling, which is highly relevant for both academic and industrial applications. It can also promote data reproducibility, support the interpretation of experimental results and, finally, contribute to our general understanding of the biophysical properties of proteins. In this study, we have developed a high throughput screen of 158 different buffers/pH conditions in which we evaluated: (i) the protein stability, using differential scanning fluorimetry and (ii) the protein function, using either enzymatic assays or binding activity measurements, both in an automated manner. The modular setup of the screen allows for easy implementation of other characterization methods and parameters, as well as additional test conditions. The buffer/pH screen was validated with five different proteins used as models, i.e. two active-site serine ß-lactamases, two metallo-ß-lactamases (one of which is only active as a tetramer) and a single-domain dromedary antibody fragment (VHH or nanobody). The formulation screen allowed automated and fast determination of optimum buffer and pH profiles for the tested proteins. Besides the determination of the optimum buffer and pH, the collection of pH profiles of many different proteins may also allow to delineate general concepts to understand and predict the relationship between pH and protein properties.


Asunto(s)
beta-Lactamasas/química , Tampones (Química) , Concentración de Iones de Hidrógeno , Estabilidad Proteica , Reproducibilidad de los Resultados
7.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34830219

RESUMEN

Uncontrolled growth of solid tumors will result in a hallmark hypoxic condition, whereby the key transcriptional regulator of hypoxia inducible factor-1α (HIF-1α) will be stabilized to activate the transcription of target genes that are responsible for the metabolism, proliferation, and metastasis of tumor cells. Targeting and inhibiting the transcriptional activity of HIF-1 may provide an interesting strategy for cancer therapy. In the present study, an immune library and a synthetic library were constructed for the phage display selection of Nbs against recombinant PAS B domain protein (rPasB) of HIF-1α. After panning and screening, seven different nanobodies (Nbs) were selected, of which five were confirmed via immunoprecipitation to target the native HIF-1α subunit. The inhibitory effect of the selected Nbs on HIF-1 induced activation of target genes has been evaluated after intracellular expression of these Nbs in HeLa cells. The dramatic inhibition of both intrabody formats on the expression of HIF-1-related target genes has been confirmed, which indicated the inhibitory efficacy of selected Nbs on the transcriptional activity of HIF-1.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Anticuerpos de Dominio Único/farmacología , Transcripción Genética/efectos de los fármacos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Hipoxia de la Célula/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Dominios Proteicos/genética , Dominios Proteicos/inmunología , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/metabolismo , Transfección , Neoplasias del Cuello Uterino/patología
8.
J Biol Chem ; 291(2): 924-38, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26565020

RESUMEN

Chromodomain Helicase DNA-binding protein 4 (CHD4) is a chromatin-remodeling enzyme that has been reported to regulate DNA-damage responses through its N-terminal region in a poly(ADP-ribose) polymerase-dependent manner. We have identified and determined the structure of a stable domain (CHD4-N) in this N-terminal region. The-fold consists of a four-α-helix bundle with structural similarity to the high mobility group box, a domain that is well known as a DNA binding module. We show that the CHD4-N domain binds with higher affinity to poly(ADP-ribose) than to DNA. We also show that the N-terminal region of CHD4, although not CHD4-N alone, is essential for full nucleosome remodeling activity and is important for localizing CHD4 to sites of DNA damage. Overall, these data build on our understanding of how CHD4-NuRD acts to regulate gene expression and participates in the DNA-damage response.


Asunto(s)
Autoantígenos/química , Autoantígenos/metabolismo , Dominios HMG-Box , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Secuencia de Aminoácidos , Ensamble y Desensamble de Cromatina , Secuencia Conservada , ADN/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , Células HEK293 , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Nucleosomas/metabolismo , Péptidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Eliminación de Secuencia , Relación Estructura-Actividad
9.
J Struct Biol ; 195(1): 19-30, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27181418

RESUMEN

Despite impressive successes in protein design, designing a well-folded protein of more 100 amino acids de novo remains a formidable challenge. Exploiting the promising biophysical features of the artificial protein Octarellin V, we improved this protein by directed evolution, thus creating a more stable and soluble protein: Octarellin V.1. Next, we obtained crystals of Octarellin V.1 in complex with crystallization chaperons and determined the tertiary structure. The experimental structure of Octarellin V.1 differs from its in silico design: the (αßα) sandwich architecture bears some resemblance to a Rossman-like fold instead of the intended TIM-barrel fold. This surprising result gave us a unique and attractive opportunity to test the state of the art in protein structure prediction, using this artificial protein free of any natural selection. We tested 13 automated webservers for protein structure prediction and found none of them to predict the actual structure. More than 50% of them predicted a TIM-barrel fold, i.e. the structure we set out to design more than 10years ago. In addition, local software runs that are human operated can sample a structure similar to the experimental one but fail in selecting it, suggesting that the scoring and ranking functions should be improved. We propose that artificial proteins could be used as tools to test the accuracy of protein structure prediction algorithms, because their lack of evolutionary pressure and unique sequences features.


Asunto(s)
Simulación por Computador/normas , Evolución Molecular Dirigida/métodos , Proteínas/química , Proteínas Recombinantes/química , Cristalografía por Rayos X , Humanos , Pliegue de Proteína , Estructura Terciaria de Proteína
10.
Biochemistry ; 53(12): 1925-34, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24606314

RESUMEN

Single-stranded DNA (ssDNA)-binding protein (SSB) protects ssDNA from degradation and recruits other proteins for DNA replication and repair. Escherichia coli SSB is the prototypical eubacterial SSB in a family of tetrameric SSBs. It consists of a structurally well-defined ssDNA binding domain (OB-domain) and a disordered C-terminal domain (C-domain). The eight-residue C-terminal segment of SSB (C-peptide) mediates the binding of SSB to many different SSB-binding proteins. Previously published nuclear magnetic resonance (NMR) data of the monomeric state at pH 3.4 showed that the C-peptide binds to the OB-domain at a site that overlaps with the ssDNA binding site, but investigating the protein at neutral pH is difficult because of the high molecular mass and limited solubility of the tetramer. Here we show that the C-domain is highly mobile in the SSB tetramer at neutral pH and that binding of the C-peptide to the OB-domain is so weak that most of the C-peptides are unbound even in the absence of ssDNA. We address the problem of determining intramolecular binding affinities in the situation of fast exchange between two states, one of which cannot be observed by NMR and cannot be fully populated. The results were confirmed by electron paramagnetic resonance spectroscopy and microscale thermophoresis. The C-peptide-OB-domain interaction is shown to be driven primarily by electrostatic interactions, so that binding of 1 equiv of (dT)35 releases practically all C-peptides from the OB-domain tetramer. The interaction is much more sensitive to NaCl than to potassium glutamate, which is the usual osmolyte in E. coli. As the C-peptide is predominantly in the unbound state irrespective of the presence of ssDNA, long-range electrostatic effects from the C-peptide may contribute more to regulating the activity of SSB than any engagement of the C-peptide by the OB-domain.


Asunto(s)
ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica/genética , Dominios y Motivos de Interacción de Proteínas/genética , Electricidad Estática
11.
J Biol Chem ; 288(15): 10616-27, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23436653

RESUMEN

Classical zinc fingers (ZFs) are one of the most abundant and best characterized DNA-binding domains. Typically, tandem arrays of three or more ZFs bind DNA target sequences with high affinity and specificity, and the mode of DNA recognition is sufficiently well understood that tailor-made ZF-based DNA-binding proteins can be engineered. We have shown previously that a two-zinc finger unit found in the transcriptional coregulator ZNF217 recognizes DNA but with an affinity and specificity that is lower than other ZF arrays. To investigate the basis for these differences, we determined the structure of a ZNF217-DNA complex. We show that although the overall position of the ZFs on the DNA closely resembles that observed for other ZFs, the side-chain interaction pattern differs substantially from the canonical model. The structure also reveals the presence of two methyl-π interactions, each featuring a tyrosine contacting a thymine methyl group. To our knowledge, interactions of this type have not previously been described in classical ZF-DNA complexes. Finally, we investigated the sequence specificity of this two-ZF unit and discuss how ZNF217 might discriminate its target DNA sites in the cell.


Asunto(s)
ADN/química , Modelos Moleculares , Proteínas de Neoplasias/química , Transactivadores/química , Cristalografía por Rayos X , ADN/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Relación Estructura-Actividad , Transactivadores/metabolismo , Dedos de Zinc
12.
J Biol Chem ; 288(49): 35180-91, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24097990

RESUMEN

Myelin transcription factor 1 (MyT1/NZF2), a member of the neural zinc-finger (NZF) protein family, is a transcription factor that plays a central role in the developing central nervous system. It has also recently been shown that, in combination with two other transcription factors, the highly similar paralog MyT1L is able to direct the differentiation of murine and human stem cells into functional neurons. MyT1 contains seven zinc fingers (ZFs) that are highly conserved throughout the protein and throughout the NZF family. We recently presented a model for the interaction of the fifth ZF of MyT1 with a DNA sequence derived from the promoter of the retinoic acid receptor (RARE) gene. Here, we have used NMR spectroscopy, in combination with surface plasmon resonance and data-driven molecular docking, to delineate the mechanism of DNA binding for double ZF polypeptides derived from MyT1. Our data indicate that a two-ZF unit interacts with the major groove of the entire RARE motif and that both fingers bind in an identical manner and with overall two-fold rotational symmetry, consistent with the palindromic nature of the target DNA. Several key residues located in one of the irregular loops of the ZFs are utilized to achieve specific binding. Analysis of the human and mouse genomes based on our structural data reveals three putative MyT1 target genes involved in neuronal development.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión/genética , ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica , Receptores de Ácido Retinoico/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Resonancia por Plasmón de Superficie , Factores de Transcripción/genética , Dedos de Zinc
13.
Angew Chem Int Ed Engl ; 53(30): 7848-52, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25044781

RESUMEN

The realization that gene transcription is much more pervasive than previously thought and that many diverse RNA species exist in simple as well as complex organisms has triggered efforts to develop functionalized RNA-binding proteins (RBPs) that have the ability to probe and manipulate RNA function. Previously, we showed that the RanBP2-type zinc finger (ZF) domain is a good candidate for an addressable single-stranded-RNA (ssRNA) binding domain that can recognize ssRNA in a modular and specific manner. In the present study, we successfully engineered a sequence specificity change onto this ZF scaffold by using a combinatorial approach based on phage display. This work constitutes a foundation from which a set of RanBP2 ZFs might be developed that is able to recognize any given RNA sequence.


Asunto(s)
Chaperonas Moleculares/química , Proteínas de Complejo Poro Nuclear/química , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Dedos de Zinc/genética , Secuencia de Aminoácidos , Sitios de Unión , Datos de Secuencia Molecular , Ingeniería de Tejidos
14.
Talanta ; 270: 125602, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199121

RESUMEN

Human papillomavirus (HPV) interacts, in vitro, with laminin 332 (LN332), a key component of the extracellular matrix. In this study, we performed bio-layer interferometry (BLI) and affinity capillary electrophoresis (ACE) to investigate the binding properties of this interaction. Virus-like particles (VLPs), composed of the HPV16 L1 major capsid protein, were used as HPV model and LN332 as the VLPs binding partner. Using BLI, we quantitatively determined the kinetics of the interaction, via the measurement of VLP binding and release from LN332 immobilized onto the surface of aminopropylsilane biosensors. We found an averaged kon of 1.74 x 104 M-1s-1 and an averaged koff of 1.50 x 10-4 s-1. Furthermore, an ACE method was developed to study the interaction under physiological conditions, where the interactants are moving freely in solution, without any fluorescence labeling. Specifically, a constant amount of HPV16-VLPs was preincubated with increasing LN332 concentrations and then the samples were injected in the capillary electrophoresis instrument. A shift in the migration time of the HPV16-VLP/LN332 complexes, carrying an increasing number of LN332 molecules bound per VLP, was observed. The mobility of the complexes was found to decrease with increasing LN332 concentrations in the sample. It was used to quantify stability constant. From BLI and ACE approaches, we reported an apparent equilibrium dissociation constant in the nanomolar range (8.89 nM and 17.7 nM, respectively) for the complex between HPV16-VLPs and LN332.


Asunto(s)
Virus del Papiloma Humano , Infecciones por Papillomavirus , Humanos , Kalinina , Papillomavirus Humano 16 , Electroforesis Capilar/métodos , Interferometría
15.
Kidney Int Rep ; 9(3): 635-648, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38481503

RESUMEN

Introduction: Comorbidities and immunosuppressive therapies are associated with reduced immune responses to primary COVID-19 mRNA vaccination in kidney transplant recipients (KTRs). In healthy individuals, prior SARS-COV-2 infection is associated with increased vaccine responses, a phenotype called hybrid immunity. In this study, we explored the potential influence of immune suppression on hybrid immunity in KTRs. Methods: Eighty-two KTRs, including 59 SARS-CoV-2-naïve (naïve KTRs [N-KTRs]) and 23 SARS-CoV-2-experienced (experienced KTRs [E-KTRs]) patients, were prospectively studied and compared to 106 healthy controls (HCs), including 40 SARS-CoV-2-naïve (N-HCs) and 66 SARS-CoV-2-experienced (E-HCs) subjects. Polyfunctional antibody and T cell responses were measured following 2 doses of BNT162b2 mRNA vaccine. Associations between vaccine responses and clinical characteristics were studied by univariate and multivariate analyses. Results: In naïve KTRs, vaccine responses were markedly lower than in HCs and were correlated with older age, more recent transplantation, kidney retransplantation after graft failure, arterial hypertension, and treatment with mycophenolate mofetil (MMF). In contrast, vaccine responses of E-KTRs were similar to those of HCs and were associated with time between transplantation and vaccination, but not with the other risk factors associated with low vaccine responses in naïve KTRs. Conclusion: In conclusion, hybrid immunity overcomes immune suppression and provides potent humoral and cellular immunity to SARS-CoV-2 in KTRs.

16.
J Biol Chem ; 286(44): 38190-38201, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21908891

RESUMEN

Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif.


Asunto(s)
ADN/química , Transactivadores/fisiología , Secuencias de Aminoácidos , Sitios de Unión , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Transactivadores/química , Transcripción Genética , Dedos de Zinc
17.
Biochim Biophys Acta ; 1814(9): 1146-53, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21621654

RESUMEN

Irreversible accumulation of protein aggregates represents an important problem both in vivo and in vitro. The aggregation of proteins is of critical importance in a wide variety of biomedical situations, ranging from diseases (such as Alzheimer's and Parkinson's diseases) to the production (e.g. inclusion bodies), stability, storage and delivery of protein drugs. ß-Cyclodextrin (ß-CD) is a circular heptasaccharide characterized by a hydrophilic exterior and a hydrophobic interior ring structure. In this research, we studied the effects of a chemically modified ß-CD (BCD07056), on the aggregating and refolding properties of BlaPChBD, a hybrid protein obtained by inserting the chitin binding domain of the human macrophage chitotriosidase into the class A ß-lactamase BlaP from Bacillus licheniformis 749/I during its thermal denaturation. The results show that BCD07056 strongly increases the refolding yield of BlaPChBD after thermal denaturation and constitutes an excellent additive to stabilize the protein over time at room temperature. Our data suggest that BCD07056 acts early in the denaturation process by preventing the formation of an intermediate which leads to an aggregated state. Finally, the role of ß-CD derivatives on the stability of proteins is discussed.


Asunto(s)
Quitina/química , Proteínas Recombinantes de Fusión/química , beta-Ciclodextrinas/química , beta-Lactamasas/química , Estabilidad de Enzimas , Desnaturalización Proteica , Pliegue de Proteína
18.
Front Genet ; 10: 403, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31134128

RESUMEN

The discovery that the non-protein coding part of human genome, dismissed as "junk DNA," is actively transcripted and carries out crucial functions is probably one of the most important discoveries of the past decades. These transcripts are becoming the rising stars of modern biology. In this review, we have casted a new light on RNAs. We have placed these molecules in the context of life origins, evolution with a big emphasize on the "RNA networks" concept. We discuss how this view can help us to understand the global role of RNA networks in modern cells, and can change our perception of the cell biology and therapy. Finally, although high-throughput methods as well as traditional case-to-case studies have laid the groundwork for our current knowledge of transcriptomes, we would like to discuss new strategies that are better suited to uncover and tackle these integrated and complex RNA networks.

19.
ACS Omega ; 4(26): 21975-21984, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31891077

RESUMEN

Carbohydrate-binding modules (CBM) play important roles in targeting and increasing the concentration of carbohydrate active enzymes on their substrates. Using NMR to get the solution structure of CBM14, we can gain insight into secondary structure elements and intramolecular interactions with our assigned nuclear overhauser effect peaks. This reveals that two conserved aromatic residues (Phe437 and Phe456) make up the hydrophobic core of the CBM. These residues are also responsible for connecting the two ß-sheets together, by being part of ß2 and ß4, respectively, and together with disulfide bridges, they create CBM14's characteristic "hevein-like" fold. Most CBMs rely on aromatic residues for substrate binding; however, CBM14 contains just a single tryptophan (Trp465) that together with Asn466 enables substrate binding. Interestingly, an alanine mutation of a single residue (Leu454) located behind Trp465 renders the CBM incapable of binding. Fluorescence spectroscopy performed on this mutant reveals a significant blue shift, as well as a minor blue shift for its neighbor Val455. The reduction in steric hindrance causes the tryptophan to be buried into the hydrophobic core of the structure and therefore suggests a preorganized binding site for this CBM. Our results show that both Trp465 and Asn466 are affected when CBM14 interacts with both (GlcNAc)3 and ß-chitin, that the binding interactions are weak, and that CBM14 displays a slightly higher affinity toward ß-chitin.

20.
Sci Rep ; 9(1): 2484, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792407

RESUMEN

Transcriptomes consist of several classes of RNA that have wide-ranging but often poorly described functions and the deregulation of which leads to numerous diseases. Engineering of functionalized RNA-binding proteins (RBPs) could therefore have many applications. Our previous studies suggested that the RanBP2-type Zinc Finger (ZF) domain is a suitable scaffold to investigate the design of single-stranded RBPs. In the present work, we have analyzed the natural sequence specificity of various members of the RanBP2-type ZF family and characterized the interaction with their target RNA. Surprisingly, our data showed that natural RanBP2-type ZFs with different RNA-binding residues exhibit a similar sequence specificity and therefore no simple recognition code can be established. Despite this finding, different discriminative abilities were observed within the family. In addition, in order to target a long RNA sequence and therefore gain in specificity, we generated a 6-ZF array by combining ZFs from the RanBP2-type family but also from different families, in an effort to achieve a wider target sequence repertoire. We showed that this chimeric protein recognizes its target sequence (20 nucleotides), both in vitro and in living cells. Altogether, our results indicate that the use of ZFs in RBP design remains attractive even though engineering of specificity changes is challenging.


Asunto(s)
Proteínas de Unión al ARN/genética , Técnica SELEX de Producción de Aptámeros/métodos , Secuencia de Bases , Sitios de Unión , Diseño de Fármacos , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , ARN/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Relación Estructura-Actividad , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA