Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pediatr Res ; 92(1): 174-179, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33654286

RESUMEN

BACKGROUND: The mammillary bodies (MBs) have repeatedly been shown to be critical for memory, yet little is known about their involvement in numerous neurological conditions linked to memory impairments, including neonatal encephalopathy. METHODS: We implemented a multicentre retrospective study, assessing magnetic resonance scans of 219 infants with neonatal encephalopathy who had undergone hypothermia treatment in neonatal intensive care units located in the Netherlands and Italy. RESULTS: Abnormal MB signal was observed in ~40% of infants scanned; in half of these cases, the brain appeared otherwise normal. MB involvement was not related to the severity of encephalopathy or the pattern/severity of hypoxic-ischaemic brain injury. Follow-up scans were available for 18 cases with abnormal MB signal; in eight of these cases, the MBs appeared severely atrophic. CONCLUSIONS: This study highlights the importance of assessing the status of the MBs in neonatal encephalopathy; this may require changes to scanning protocols to ensure that the slices are sufficiently thin to capture the MBs. Furthermore, long-term follow-up of infants with abnormal MB signal is needed to determine the effects on cognition, which may enable the use of early intervention strategies. Further research is needed to assess the role of therapeutic hypothermia in MB involvement in neonatal encephalopathy. IMPACT: The MBs are particularly sensitive to hypoxia in neonates. Current hypothermia treatment provides incomplete protection against MB injury. MB involvement is likely overlooked as it can often occur when the rest of the brain appears normal. Given the importance of the MBs for memory, it is necessary that this region is properly assessed in neonatal encephalopathy. This may require improvements in scanning protocols.


Asunto(s)
Hipotermia Inducida , Hipotermia , Hipoxia-Isquemia Encefálica , Enfermedades del Recién Nacido , Humanos , Hipotermia/terapia , Hipotermia Inducida/métodos , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Hipoxia-Isquemia Encefálica/terapia , Lactante , Recién Nacido , Enfermedades del Recién Nacido/terapia , Tubérculos Mamilares , Estudios Retrospectivos
2.
Cereb Cortex ; 30(8): 4424-4437, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32147692

RESUMEN

The rodent retrosplenial cortex (RSC) functions as an integrative hub for sensory and motor signals, serving roles in both navigation and memory. While RSC is reciprocally connected with the sensory cortex, the form in which sensory information is represented in the RSC and how it interacts with motor feedback is unclear and likely to be critical to computations involved in navigation such as path integration. Here, we used 2-photon cellular imaging of neural activity of putative excitatory (CaMKII expressing) and inhibitory (parvalbumin expressing) neurons to measure visual and locomotion evoked activity in RSC and compare it to primary visual cortex (V1). We observed stimulus position and orientation tuning, and a retinotopic organization. Locomotion modulation of activity of single neurons, both in darkness and light, was more pronounced in RSC than V1, and while locomotion modulation was strongest in RSC parvalbumin-positive neurons, visual-locomotion integration was found to be more supralinear in CaMKII neurons. Longitudinal measurements showed that response properties were stably maintained over many weeks. These data provide evidence for stable representations of visual cues in RSC that are spatially selective. These may provide sensory data to contribute to the formation of memories of spatial information.


Asunto(s)
Giro del Cíngulo/fisiología , Neuronas/fisiología , Memoria Espacial/fisiología , Percepción Visual/fisiología , Animales , Señales (Psicología) , Ratones
3.
J Neurosci ; 39(1): 3-14, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389839

RESUMEN

Historically, the thalamus has been viewed as little more than a relay, simply transferring information to key players of the cast, the cortex and hippocampus, without providing any unique functional contribution. In recent years, evidence from multiple laboratories researching different thalamic nuclei has contradicted this idea of the thalamus as a passive structure. Dated models of thalamic functions are being pushed aside, revealing a greater and far more complex contribution of the thalamus for cognition. In this Viewpoints article, we show how recent data support novel views of thalamic functions that emphasize integrative roles in cognition, ranging from learning and memory to flexible adaption. We propose that these apparently separate cognitive functions may indeed be supported by a more general role in shaping mental representations. Several features of thalamocortical circuits are consistent with this suggested role, and we highlight how divergent and convergent thalamocortical and corticothalamic pathways may complement each other to support these functions. Furthermore, the role of the thalamus for subcortical integration is highlighted as a key mechanism for maintaining and updating representations. Finally, we discuss future areas of research and stress the importance of incorporating new experimental findings into existing knowledge to continue developing thalamic models. The presence of thalamic pathology in a number of neurological conditions reinforces the need to better understand the role of this region in cognition.


Asunto(s)
Cognición/fisiología , Tálamo/fisiología , Animales , Humanos , Aprendizaje/fisiología , Memoria/fisiología , Procesos Mentales
4.
J Neurosci ; 39(34): 6696-6713, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31235646

RESUMEN

Diencephalic amnesia can be as debilitating as the more commonly known temporal lobe amnesia, yet the precise contribution of diencephalic structures to memory processes remains elusive. Across four cohorts of male rats, we used discrete lesions of the mammillothalamic tract to model aspects of diencephalic amnesia and assessed the impact of these lesions on multiple measures of activity and plasticity within the hippocampus and retrosplenial cortex. Lesions of the mammillothalamic tract had widespread indirect effects on hippocampocortical oscillatory activity within both theta and gamma bands. Both within-region oscillatory activity and cross-regional synchrony were altered. The network changes were state-dependent, displaying different profiles during locomotion and paradoxical sleep. Consistent with the associations between oscillatory activity and plasticity, complementary analyses using several convergent approaches revealed microstructural changes, which appeared to reflect a suppression of learning-induced plasticity in lesioned animals. Together, these combined findings suggest a mechanism by which damage to the medial diencephalon can impact upon learning and memory processes, highlighting an important role for the mammillary bodies in the coordination of hippocampocortical activity.SIGNIFICANCE STATEMENT Information flow within the Papez circuit is critical to memory. Damage to ascending mammillothalamic projections has consistently been linked to amnesia in humans and spatial memory deficits in animal models. Here we report on the changes in hippocampocortical oscillatory dynamics that result from chronic lesions of the mammillothalamic tract and demonstrate, for the first time, that the mammillary bodies, independently of the supramammillary region, contribute to frequency modulation of hippocampocortical theta oscillations. Consistent with the associations between oscillatory activity and plasticity, the lesions also result in a suppression of learning-induced plasticity. Together, these data support new functional models whereby mammillary bodies are important for coordinating hippocampocortical activity rather than simply being a relay of hippocampal information as previously assumed.


Asunto(s)
Amnesia/fisiopatología , Diencéfalo/fisiopatología , Hipocampo/fisiopatología , Tubérculos Mamilares/fisiopatología , Vías Nerviosas/fisiopatología , Tálamo/fisiopatología , Amnesia/diagnóstico por imagen , Animales , Diencéfalo/diagnóstico por imagen , Electroencefalografía , Ritmo Gamma , Hipocampo/diagnóstico por imagen , Locomoción , Imagen por Resonancia Magnética , Masculino , Tubérculos Mamilares/diagnóstico por imagen , Aprendizaje por Laberinto , Vías Nerviosas/diagnóstico por imagen , Plasticidad Neuronal , Ratas , Sueño REM , Memoria Espacial , Tálamo/diagnóstico por imagen , Ritmo Teta
5.
Eur J Neurosci ; 45(11): 1451-1464, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28394458

RESUMEN

It has been proposed that the retrosplenial cortex forms part of a 'where/when' information network. The present study focussed on the related issue of whether retrosplenial cortex also contributes to 'what/when' information, by examining object recency memory. In Experiment 1, rats with retrosplenial lesions were found to be impaired at distinguishing the temporal order of objects presented in a continuous series ('Within-Block' condition). The same lesioned rats could, however, distinguish between objects that had been previously presented in one of two discrete blocks ('Between-Block' condition). Experiment 2 used intact rats to map the expression of the immediate-early gene c-fos in retrosplenial cortex following performance of a between-block, recency discrimination. Recency performance correlated positively with levels of c-fos expression in both granular and dysgranular retrosplenial cortex (areas 29 and 30). Expression of c-fos in the granular retrosplenial cortex also correlated with prelimbic cortex and ventral subiculum c-fos activity, the latter also correlating with recency memory performance. The combined findings from both experiments reveal an involvement of the retrosplenial cortex in temporal order memory, which includes both between-block and within-block problems. The current findings also suggest that the rat retrosplenial cortex comprises one of a group of closely interlinked regions that enable recency memory, including the hippocampal formation, medial diencephalon and medial frontal cortex. In view of the well-established importance of the retrosplenial cortex for spatial learning, the findings support the notion that, with its frontal and hippocampal connections, retrosplenial cortex has a key role for both what/when and where/when information.


Asunto(s)
Encéfalo/fisiología , Memoria Espacial , Animales , Encéfalo/citología , Masculino , Memoria a Largo Plazo , Memoria a Corto Plazo , Neuronas/metabolismo , Neuronas/fisiología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas
6.
J Neurosci ; 35(14): 5480-8, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25855166

RESUMEN

The prefrontal cortex mediates adaption to changing environmental contingencies. The anterior thalamic nuclei, which are closely interconnected with the prefrontal cortex, are important for rodent spatial memory, but their potential role in executive function has received scant attention. The current study examined whether the anterior thalamic nuclei are involved in attentional processes akin to those of prefrontal regions. Remarkably, the results repeatedly revealed attentional properties opposite to those of the prefrontal cortex. Two separate cohorts of rats with anterior thalamic lesions were tested on an attentional set-shifting paradigm that measures not only the ability of stimuli dimensions that reliably predict reinforcement to gain attention ("intradimensional shift"), but also their ability to shift attention to another stimulus dimension when contingencies change ("extradimensional shift"). In stark contrast to the effects of prefrontal damage, anterior thalamic lesions impaired intradimensional shifts but facilitated extradimensional shifts. Anterior thalamic lesion animals were slower to acquire discriminations based on the currently relevant stimulus dimension but acquired discriminations involving previously irrelevant stimulus dimensions more rapidly than controls. Subsequent tests revealed that the critical determinant of whether anterior thalamic lesions facilitate extradimensional shifts is the degree to which the stimulus dimension has been established as an unreliable predictor of reinforcement over preceding trials. This pattern of performance reveals that the anterior thalamic nuclei are vital for attending to those stimuli that are the best predictors of reward. In their absence, unreliable predictors of reward usurp attentional control.


Asunto(s)
Núcleos Talámicos Anteriores/fisiología , Atención/fisiología , Aprendizaje Discriminativo/fisiología , Disposición en Psicología , Percepción Espacial/fisiología , Análisis de Varianza , Animales , Núcleos Talámicos Anteriores/lesiones , Estimulación Eléctrica , Agonistas de Aminoácidos Excitadores/toxicidad , Lateralidad Funcional , Ácido Iboténico/toxicidad , Masculino , N-Metilaspartato/toxicidad , Ratas , Recompensa
7.
Neuroimage ; 130: 35-47, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26778129

RESUMEN

The fornix connects the hippocampal formation with structures beyond the temporal lobe. Previous tractography studies have typically reconstructed the fornix as one unified bundle. However, the fornix contains two rostral divisions: the precommissural fornix and the postcommissural fornix. Each division has distinct anatomical connections and, hence, potentially distinct functions. Diffusion weighted MRI and spherical deconvolution based tractography were employed to reconstruct these separate fornix divisions and to examine their microstructural properties in both healthy ageing and Mild Cognitive Impairment (MCI). Reliable reconstructions of precommissural and postcommissural fibres were achieved in both groups, with their fibres retaining largely separate locations within the anterior body of the fornix. Ageing and MCI had comparable effects on the two segments. Ageing was associated with changes in mean, axial and radial diffusivity but not with alterations of fibre population-specific diffusion properties, estimated with the hindrance modulated orientational anisotropy (HMOA). Individual HMOA variation in postcommissural, but not precommissural, fibres correlated positively (and unrelated to age) with visual recall performance. This provides novel evidence for a role of postcommissural fibres, which connect structures of the extended hippocampal network, in episodic memory function. Separating the fornix into its two principal divisions brings new opportunities for distinguishing different hippocampal networks.


Asunto(s)
Envejecimiento/patología , Disfunción Cognitiva/diagnóstico por imagen , Fórnix/patología , Anciano , Anciano de 80 o más Años , Disfunción Cognitiva/patología , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Memoria Episódica , Persona de Mediana Edad , Vías Nerviosas/patología
8.
Eur J Neurosci ; 43(8): 1044-61, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26855336

RESUMEN

The origins of the hippocampal (subicular) projections to the anterior thalamic nuclei and mammillary bodies were compared in rats and macaque monkeys using retrograde tracers. These projections form core components of the Papez circuit, which is vital for normal memory. The study revealed a complex pattern of subicular efferents, consistent with the presence of different, parallel information streams, whose segregation appears more marked in the rat brain. In both species, the cells projecting to the mammillary bodies and anterior thalamic nuclei showed laminar separation but also differed along other hippocampal axes. In the rat, these diencephalic inputs showed complementary topographies in the proximal-distal (columnar) plane, consistent with differential involvement in object-based (proximal subiculum) and context-based (distal subiculum) information. The medial mammillary inputs, which arose along the anterior-posterior extent of the rat subiculum, favoured the central subiculum (septal hippocampus) and the more proximal subiculum (temporal hippocampus). In contrast, anterior thalamic inputs were largely confined to the dorsal (i.e. septal and intermediate) subiculum, where projections to the anteromedial nucleus favoured the proximal subiculum while those to the anteroventral nucleus predominantly arose in the distal subiculum. In the macaque, the corresponding diencephalic inputs were again distinguished by anterior-posterior topographies, as subicular inputs to the medial mammillary bodies predominantly arose from the posterior hippocampus while subicular inputs to the anteromedial thalamic nucleus predominantly arose from the anterior hippocampus. Unlike the rat, there was no clear evidence of proximal-distal separation as all of these medial diencephalic projections preferentially arose from the more distal subiculum.


Asunto(s)
Núcleos Talámicos Anteriores/anatomía & histología , Hipocampo/anatomía & histología , Tubérculos Mamilares/anatomía & histología , Animales , Macaca fascicularis , Macaca mulatta , Masculino , Vías Nerviosas/anatomía & histología , Ratas , Especificidad de la Especie
9.
Hippocampus ; 25(9): 977-92, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25616174

RESUMEN

The hippocampal formation and anterior thalamic nuclei form part of an interconnected network thought to support memory. A central pathway in this mnemonic network comprises the direct projections from the hippocampal formation to the anterior thalamic nuclei, projections that, in the primate brain, originate in the subicular cortices to reach the anterior thalamic nuclei by way of the fornix. In the rat brain, additional pathways involving the internal capsule have been described, linking the dorsal subiculum to the anteromedial thalamic nucleus, as well as the postsubiculum to the anterodorsal thalamic nucleus. Confirming such pathways is essential in order to appreciate how information is transferred from the hippocampal formation to the anterior thalamus and how it may be disrupted by fornix pathology. Accordingly, in the present study, pathway tracers were injected into the anterior thalamic nuclei and the dorsal subiculum of rats with fornix lesions. Contrary to previous descriptions, projections from the subiculum to the anteromedial thalamic nucleus overwhelmingly relied on the fornix. Dorsal subiculum projections to the majority of the anteroventral nucleus also predominantly relied on the fornix, although postsubicular inputs to the lateral dorsal part of the anteroventral nucleus, as well as to the anterodorsal and laterodorsal thalamic nuclei, largely involved a nonfornical pathway, via the internal capsule.


Asunto(s)
Núcleos Talámicos Anteriores/citología , Hipocampo/citología , Vías Nerviosas/fisiología , Amidinas/metabolismo , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Dextranos/metabolismo , Fórnix/lesiones , Fórnix/fisiología , Lateralidad Funcional , Masculino , Ratas , Ratas Wistar , Aglutinina del Germen de Trigo-Peroxidasa de Rábano Silvestre Conjugada/metabolismo
10.
Learn Mem ; 21(3): 171-9, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24554671

RESUMEN

The retrosplenial cortex supports navigation, with one role thought to be the integration of different spatial cue types. This hypothesis was extended by examining the integration of nonspatial cues. Rats with lesions in either the dysgranular subregion of retrosplenial cortex (area 30) or lesions in both the granular and dysgranular subregions (areas 29 and 30) were tested on cross-modal object recognition (Experiment 1). In these tests, rats used different sensory modalities when exploring and subsequently recognizing the same test objects. The objects were first presented either in the dark, i.e., giving tactile and olfactory cues, or in the light behind a clear Perspex barrier, i.e., giving visual cues. Animals were then tested with either constant combinations of sample and test conditions (light to light, dark to dark), or changed "cross-modal" combinations (light to dark, dark to light). In Experiment 2, visual object recognition was tested without Perspex barriers, but using objects that could not be distinguished in the dark. The dysgranular retrosplenial cortex lesions selectively impaired cross-modal recognition when cue conditions switched from dark to light between initial sampling and subsequent object recognition, but no impairment was seen when the cue conditions remained constant, whether dark or light. The combined (areas 29 and 30) lesioned rats also failed the dark to light cross-modal problem but this impairment was less selective. The present findings suggest a role for the dysgranular retrosplenial cortex in mediating the integration of information across multiple cue types, a role that potentially applies to both spatial and nonspatial domains.


Asunto(s)
Giro del Cíngulo/fisiología , Reconocimiento en Psicología/fisiología , Percepción Espacial/fisiología , Animales , Señales (Psicología) , Discriminación en Psicología/fisiología , Masculino , Ratas
11.
Learn Mem ; 21(2): 90-7, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24434870

RESUMEN

By virtue of its frontal and hippocampal connections, the retrosplenial cortex is uniquely placed to support cognition. Here, we tested whether the retrosplenial cortex is required for frontal tasks analogous to the Stroop Test, i.e., for the ability to select between conflicting responses and inhibit responding to task-irrelevant cues. Rats first acquired two instrumental conditional discriminations, one auditory and one visual, set in two distinct contexts. As a result, rats were rewarded for pressing either the right or left lever when a particular auditory or visual signal was present. In extinction, rats received compound stimuli that either comprised the auditory and visual elements that signaled the same lever response (congruent) or signaled different lever responses (incongruent) during training. On conflict (incongruent) trials, lever selection by sham-operated animals followed the stimulus element that had previously been trained in that same test context, whereas animals with retrosplenial cortex lesions failed to disambiguate the conflicting response cues. Subsequent experiments demonstrated that this abnormality on conflict trials was not due to a failure in distinguishing the contexts. Rather, these data reveal the selective involvement of the rat retrosplenial cortex in response conflict, and so extend the frontal system underlying cognitive control.


Asunto(s)
Conducta de Elección/fisiología , Función Ejecutiva/fisiología , Giro del Cíngulo/fisiología , Estimulación Acústica , Animales , Percepción Auditiva/fisiología , Condicionamiento Psicológico/fisiología , Señales (Psicología) , Discriminación en Psicología/fisiología , Extinción Psicológica/fisiología , Giro del Cíngulo/patología , Masculino , Motivación/fisiología , Pruebas Neuropsicológicas , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Distribución Aleatoria , Ratas , Recompensa , Test de Stroop , Análisis y Desempeño de Tareas , Percepción Visual/fisiología
12.
J Neurophysiol ; 112(9): 2316-31, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25122712

RESUMEN

Head direction cells encode an animal's heading in the horizontal plane. However, it is not clear why the directionality of a cell's mean firing rate differs for clockwise, compared with counterclockwise, head turns (this difference is known as the "separation angle") in anterior thalamus. Here we investigated in freely behaving rats whether intrinsic neuronal firing properties are linked to this phenomenon. We found a positive correlation between the separation angle and the spiking variability of thalamic head direction cells. To test whether this link is driven by hyperpolarization-inducing currents, we investigated the effect of thalamic reticular inhibition during high-voltage spindles on directional spiking. While the selective directional firing of thalamic neurons was preserved, we found no evidence for entrainment of thalamic head direction cells by high-voltage spindle oscillations. We then examined the role of depolarization-inducing currents in the formation of separation angle. Using a single-compartment Hodgkin-Huxley model, we show that modeled neurons fire with higher frequencies during the ascending phase of sinusoidal current injection (mimicking the head direction tuning curve) when simulated with higher high-threshold calcium channel conductance. These findings demonstrate that the turn-specific encoding of directional signal strongly depends on the ability of thalamic neurons to fire irregularly in response to sinusoidal excitatory activation. Another crucial factor for inducing phase lead to sinusoidal current injection was the presence of spike-frequency adaptation current in the modeled neurons. Our data support a model in which intrinsic biophysical properties of thalamic neurons mediate the physiological encoding of directional information.


Asunto(s)
Potenciales de Acción , Movimientos de la Cabeza , Neuronas/fisiología , Tálamo/fisiología , Adaptación Fisiológica , Animales , Señalización del Calcio , Modelos Neurológicos , Neuronas/metabolismo , Ratas , Tálamo/citología
13.
Eur J Neurosci ; 39(1): 107-23, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24134130

RESUMEN

Interactions between the posterior cingulate cortex (areas 23 and 31) and the retrosplenial cortex (areas 29 and 30) with the anterior, laterodorsal and dorsal medial thalamic nuclei are thought to support various aspects of cognition, including memory and spatial processing. To detail these interactions better, the present study used retrograde tracers to reveal the origins of the corticothalamic projections in two closely related monkey species (Macaca mulatta, Macaca fascicularis). The medial dorsal thalamic nucleus received only light cortical inputs, which predominantly arose from area 23. Efferents to the anterior medial thalamic nucleus also arose principally from area 23, but these projections proved more numerous than those to the medial dorsal nucleus and also involved additional inputs from areas 29 and 30. The anterior ventral and laterodorsal thalamic nuclei had similar sources of inputs from the posterior cingulate and retrosplenial cortices. For both nuclei, the densest projections arose from areas 29 and 30, with numbers of thalamic inputs often decreasing when going dorsal from area 23a to 23c and to area 31. In all cases, the corticothalamic projections almost always arose from the deepest cortical layer. The different profiles of inputs to the anterior medial and anterior ventral thalamic nuclei reinforce other anatomical and electrophysiological findings suggesting that these adjacent thalamic nuclei serve different, but complementary, functions supporting memory. While the lack of retrosplenial connections singled out the medial dorsal nucleus, the very similar connection patterns shown by the anterior ventral and laterodorsal nuclei point to common roles in cognition.


Asunto(s)
Corteza Cerebral/fisiología , Núcleos Talámicos/fisiología , Animales , Corteza Cerebral/anatomía & histología , Macaca fascicularis , Macaca mulatta , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Núcleos Talámicos/anatomía & histología
14.
Nat Rev Neurosci ; 10(11): 792-802, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19812579

RESUMEN

The past decade has seen a transformation in research on the retrosplenial cortex (RSC). This cortical area has emerged as a key member of a core network of brain regions that underpins a range of cognitive functions, including episodic memory, navigation, imagination and planning for the future. It is now also evident that the RSC is consistently compromised in the most common neurological disorders that impair memory. Here we review advances on multiple fronts, most notably in neuroanatomy, animal studies and neuroimaging, that have highlighted the importance of the RSC for cognition, and consider why specifying its precise functions remains problematic.


Asunto(s)
Núcleos Talámicos Anteriores/fisiología , Corteza Cerebral/fisiología , Cognición/fisiología , Giro del Cíngulo/fisiología , Animales , Corteza Cerebral/anatomía & histología , Giro del Cíngulo/anatomía & histología , Humanos , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología
15.
eNeuro ; 11(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38621991

RESUMEN

The medial mammillary bodies (MBs) play an important role in the formation of spatial memories; their dense inputs from hippocampal and brainstem regions makes them well placed to integrate movement-related and spatial information, which is then extended to the anterior thalamic nuclei and beyond to the cortex. While the anatomical connectivity of the medial MBs has been well studied, much less is known about their physiological properties, particularly in freely moving animals. We therefore carried out a comprehensive characterization of medial MB electrophysiology across arousal states by concurrently recording from the medial MB and the CA1 field of the hippocampus in male rats. In agreement with previous studies, we found medial MB neurons to have firing rates modulated by running speed and angular head velocity, as well as theta-entrained firing. We extended the characterization of MB neuron electrophysiology in three key ways: (1) we identified a subset of neurons (25%) that exhibit dominant bursting activity; (2) we showed that ∼30% of theta-entrained neurons exhibit robust theta cycle skipping, a firing characteristic that implicates them in a network for prospective coding of position; and (3) a considerable proportion of medial MB units showed sharp-wave ripple (SWR) responsive firing (∼37%). The functional heterogeneity of MB electrophysiology reinforces their role as an integrative node for mnemonic processing and identifies potential roles for the MBs in memory consolidation through propagation of SWR-responsive activity to the anterior thalamus and prospective coding in the form of theta cycle skipping.


Asunto(s)
Región CA1 Hipocampal , Tubérculos Mamilares , Neuronas , Ratas Long-Evans , Sueño , Ritmo Teta , Vigilia , Animales , Tubérculos Mamilares/fisiología , Masculino , Neuronas/fisiología , Sueño/fisiología , Ratas , Ritmo Teta/fisiología , Vigilia/fisiología , Región CA1 Hipocampal/fisiología , Potenciales de Acción/fisiología , Fenómenos Electrofisiológicos/fisiología
16.
Sci Rep ; 14(1): 5977, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472268

RESUMEN

mGluR2 receptors are widely expressed in limbic brain regions associated with memory, including the hippocampal formation, retrosplenial and frontal cortices, as well as subcortical regions including the mammillary bodies. mGluR2/3 agonists have been proposed as potential therapeutics for neurological and psychiatric disorders, however, there is still little known about the role of these receptors in cognitive processes, including memory consolidation. To address this, we assessed the effect of the mGluR2/3 agonist, eglumetad, on spatial memory consolidation in both mice and rats. Using the novel place preference paradigm, we found that post-sample injections of eglumetad impaired subsequent spatial discrimination when tested 6 h later. Using the immediate early gene c-fos as a marker of neural activity, we showed that eglumetad injections reduced activity in a network of limbic brain regions including the hippocampus and mammillary bodies. To determine whether the systemic effects could be replicated with more targeted manipulations, we performed post-sample infusions of the mGluR2/3 agonist 2R,4R-APDC into the mammillary bodies. This impaired novelty discrimination on a place preference task and an object-in-place task, again highlighting the role of mGluR2/3 transmission in memory consolidation and demonstrating the crucial involvement of the mammillary bodies in post-encoding processing of spatial information.


Asunto(s)
Tubérculos Mamilares , Memoria Espacial , Humanos , Ratas , Ratones , Animales , Compuestos Bicíclicos con Puentes/farmacología , Encéfalo , Hipocampo
18.
Neuropsychologia ; 191: 108728, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37939875

RESUMEN

To understand the neural basis of episodic memory it is necessary to appreciate the significance of the fornix. This pathway creates a direct link between those temporal lobe and medial diencephalic sites responsible for anterograde amnesia. A collaboration with Andrew Mayes made it possible to recruit and scan 38 patients with colloid cysts in the third ventricle, a condition associated with variable fornix damage. Complete fornix loss was seen in three patients, who suffered chronic long-term memory problems. Volumetric analyses involving all 38 patients then revealed a highly consistent relationship between mammillary body volume and the recall of episodic memory. That relationship was not seen for working memory or tests of recognition memory. Three different methods all supported a dissociation between recollective-based recognition (impaired) and familiarity-based recognition (spared). This dissociation helped to show how the mammillary body-anterior thalamic nuclei axis, as well as the hippocampus, is vital for episodic memory yet is not required for familiarity-based recognition. These findings set the scene for a reformulation of temporal lobe and diencephalic amnesia. In this revised model, these two regions converge on overlapping cortical areas, including retrosplenial cortex. The united actions of the hippocampal formation and the anterior thalamic nuclei on these cortical areas enable episodic memory encoding and consolidation, impacting on subsequent recall.


Asunto(s)
Memoria Episódica , Humanos , Diencéfalo/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Amnesia/diagnóstico por imagen , Recuerdo Mental , Tubérculos Mamilares/diagnóstico por imagen
19.
Schizophrenia (Heidelb) ; 9(1): 48, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528127

RESUMEN

While the frontal cortices and medial temporal lobe are well associated with schizophrenia, the involvement of wider limbic areas is less clear. The mammillary bodies are important for both complex memory formation and anxiety and are implicated in several neurological disorders that present with memory impairments. However, little is known about their role in schizophrenia. Post-mortem studies have reported a loss of neurons in the mammillary bodies but there are also reports of increased mammillary body volume. The findings from in vivo MRI studies have also been mixed, but studies have typically only involved small sample sizes. To address this, we acquired mammillary body volumes from the open-source COBRE dataset, where we were able to manually measure the mammillary bodies in 72 individuals with a schizophrenia diagnosis and 74 controls. Participant age ranged from 18 to 65. We found the mammillary bodies to be smaller in the patient group, across both hemispheres, after accounting for the effects of total brain volume and gender. Hippocampal volumes, but not subiculum or total grey matter volumes, were also significantly lower in patients. Given the importance of the mammillary bodies for both memory and anxiety, this atrophy could contribute to the symptomology in schizophrenia.

20.
J Neurosci ; 31(26): 9489-502, 2011 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-21715614

RESUMEN

A major tool in understanding how the brain processes information is the analysis of neuronal output at each hierarchical level along the pathway of signal propagation. Theta rhythm and head directionality are the two main signals found across all levels of Papez's circuit, which supports episodic memory formation. Here, we provide evidence that the functional interaction between both signals occurs at a subcortical level. We show that there is population of head direction cells (39%) in rat anteroventral thalamic nucleus that exhibit rhythmic spiking in the theta range. This class of units, termed HD-by-theta (head direction-by-theta) cells, discharged predominantly in spike trains at theta frequency (6-12 Hz). The highest degree of theta rhythmicity was evident when the animal was heading/facing in the preferred direction, expressed by the Gaussian peak of the directional tuning curve. The theta-rhythmic mode of spiking was closely related to the firing activity of local theta-bursting cells. We also found that 32% of anteroventral theta-bursting cells displayed a head-directional modulation of their spiking. This crossover between theta and head-directional signals indicates that anterior thalamus integrates information related to heading and movement, and may therefore actively modulate hippocampo-dencephalic information processing.


Asunto(s)
Neuronas/fisiología , Orientación/fisiología , Tálamo/fisiología , Ritmo Teta/fisiología , Potenciales de Acción/fisiología , Animales , Cabeza/fisiología , Hipocampo/fisiología , Movimiento/fisiología , Vías Nerviosas/fisiología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA