Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 629(8011): 458-466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658765

RESUMEN

Heteroplasmy occurs when wild-type and mutant mitochondrial DNA (mtDNA) molecules co-exist in single cells1. Heteroplasmy levels change dynamically in development, disease and ageing2,3, but it is unclear whether these shifts are caused by selection or drift, and whether they occur at the level of cells or intracellularly. Here we investigate heteroplasmy dynamics in dividing cells by combining precise mtDNA base editing (DdCBE)4 with a new method, SCI-LITE (single-cell combinatorial indexing leveraged to interrogate targeted expression), which tracks single-cell heteroplasmy with ultra-high throughput. We engineered cells to have synonymous or nonsynonymous complex I mtDNA mutations and found that cell populations in standard culture conditions purge nonsynonymous mtDNA variants, whereas synonymous variants are maintained. This suggests that selection dominates over simple drift in shaping population heteroplasmy. We simultaneously tracked single-cell mtDNA heteroplasmy and ancestry, and found that, although the population heteroplasmy shifts, the heteroplasmy of individual cell lineages remains stable, arguing that selection acts at the level of cell fitness in dividing cells. Using these insights, we show that we can force cells to accumulate high levels of truncating complex I mtDNA heteroplasmy by placing them in environments where loss of biochemical complex I activity has been reported to benefit cell fitness. We conclude that in dividing cells, a given nonsynonymous mtDNA heteroplasmy can be harmful, neutral or even beneficial to cell fitness, but that the 'sign' of the effect is wholly dependent on the environment.


Asunto(s)
División Celular , Linaje de la Célula , ADN Mitocondrial , Aptitud Genética , Heteroplasmia , Selección Genética , Análisis de la Célula Individual , Animales , Femenino , Humanos , Ratones , División Celular/genética , Línea Celular , Linaje de la Célula/genética , ADN Mitocondrial/genética , Edición Génica , Heteroplasmia/genética , Mitocondrias/genética , Mutación , Análisis de la Célula Individual/métodos
2.
Clin Cancer Res ; 29(17): 3457-3470, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37289199

RESUMEN

PURPOSE: Oncogene-driven macropinocytosis fuels nutrient scavenging in some cancer types, yet whether this occurs in thyroid cancers with prominent MAPK-ERK and PI3K pathway mutations remains unclear. We hypothesized that understanding links between thyroid cancer signaling and macropinocytosis might uncover new therapeutic strategies. EXPERIMENTAL DESIGN: Macropinocytosis was assessed across cells derived from papillary thyroid cancer (PTC), follicular thyroid cancer (FTC), non-malignant follicular thyroid, and aggressive anaplastic thyroid cancer (ATC), by imaging fluorescent dextran and serum albumin. The impacts of ectopic BRAFV600E and mutant RAS, genetic PTEN silencing, and inhibitors targeting RET, BRAF, and MEK kinases were quantified. BrafV600E p53-/- ATC tumors in immunocompetent mice were used to measure efficacy of an albumin-drug conjugate comprising microtubule-destabilizing monomethyl auristatin E (MMAE) linked to serum albumin via a cathepsin-cleavable peptide (Alb-vc-MMAE). RESULTS: FTC and ATC cells showed greater macropinocytosis than non-malignant and PTC cells. ATC tumors accumulated albumin at 8.8% injected dose per gram tissue. Alb-vc-MMAE, but not MMAE alone, reduced tumor size by >90% (P < 0.01). ATC macropinocytosis depended on MAPK/ERK activity and nutrient signaling, and increased by up to 230% with metformin, phenformin, or inhibition of IGF1Ri in monoculture but not in vivo. Macrophages also accumulated albumin and express the cognate IGF1R ligand, IGF1, which reduced ATC responsiveness to IGF1Ri. CONCLUSIONS: These findings identify regulated oncogene-driven macropinocytosis in thyroid cancers and demonstrate the potential of designing albumin-bound drugs to efficiently treat them.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Ratones , Animales , Fosfatidilinositol 3-Quinasas/genética , Mutación , Proteínas Proto-Oncogénicas B-raf , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Carcinoma Anaplásico de Tiroides/genética , Oncogenes , Cáncer Papilar Tiroideo/genética , Albúmina Sérica/genética , Albúmina Sérica/uso terapéutico
3.
Cancer Discov ; 13(8): 1904-1921, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37262067

RESUMEN

Oncocytic (Hürthle cell) carcinoma of the thyroid (HCC) is genetically characterized by complex I mitochondrial DNA mutations and widespread chromosomal losses. Here, we utilize RNA sequencing and metabolomics to identify candidate molecular effectors activated by these genetic drivers. We find glutathione biosynthesis, amino acid metabolism, mitochondrial unfolded protein response, and lipid peroxide scavenging to be increased in HCC. A CRISPR-Cas9 knockout screen in a new HCC model reveals which pathways are key for fitness, and highlights loss of GPX4, a defense against lipid peroxides and ferroptosis, as a strong liability. Rescuing complex I redox activity with the yeast NADH dehydrogenase (NDI1) in HCC cells diminishes ferroptosis sensitivity, while inhibiting complex I in normal thyroid cells augments ferroptosis induction. Our work demonstrates unmitigated lipid peroxide stress to be an HCC vulnerability that is mechanistically coupled to the genetic loss of mitochondrial complex I activity. SIGNIFICANCE: HCC harbors abundant mitochondria, mitochondrial DNA mutations, and chromosomal losses. Using a CRISPR-Cas9 screen inspired by transcriptomic and metabolomic profiling, we identify molecular effectors essential for cell fitness. We uncover lipid peroxide stress as a vulnerability coupled to mitochondrial complex I loss in HCC. See related article by Frank et al., p. 1884. This article is highlighted in the In This Issue feature, p. 1749.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Glándula Tiroides/metabolismo , Carcinoma Hepatocelular/metabolismo , Peróxidos Lipídicos/metabolismo , Fermentación , Células Oxífilas/metabolismo , Neoplasias Hepáticas/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA