Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 149(5): 994-1007, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22608083

RESUMEN

Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer's lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer's development, triggering diagnosis.


Asunto(s)
Neoplasias de la Mama/genética , Transformación Celular Neoplásica , Evolución Clonal , Mutación , Algoritmos , Aberraciones Cromosómicas , Femenino , Humanos , Mutación Puntual
2.
Cell ; 149(5): 979-93, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22608084

RESUMEN

All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis," was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.


Asunto(s)
Neoplasias de la Mama/genética , Análisis Mutacional de ADN , Estudio de Asociación del Genoma Completo , Mutación , Desaminasas APOBEC-1 , Proteína BRCA2/genética , Citidina Desaminasa/metabolismo , Femenino , Genes BRCA1 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
3.
Cell ; 144(1): 27-40, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21215367

RESUMEN

Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%-3% of all cancers, across many subtypes, and is present in ∼25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer.


Asunto(s)
Aberraciones Cromosómicas , Neoplasias/genética , Neoplasias/patología , Neoplasias Óseas/genética , Línea Celular Tumoral , Pintura Cromosómica , Femenino , Reordenamiento Génico , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Persona de Mediana Edad
4.
Crit Care ; 28(1): 91, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515193

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster. METHODS: Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3. RESULTS: Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3. CONCLUSIONS: During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Análisis por Conglomerados , Unidades de Cuidados Intensivos , Estudios Prospectivos , Síndrome de Dificultad Respiratoria/terapia , Estudios Retrospectivos
5.
Nature ; 554(7690): 62-68, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364867

RESUMEN

The poor correlation of mutational landscapes with phenotypes limits our understanding of the pathogenesis and metastasis of pancreatic ductal adenocarcinoma (PDAC). Here we show that oncogenic dosage-variation has a critical role in PDAC biology and phenotypic diversification. We find an increase in gene dosage of mutant KRAS in human PDAC precursors, which drives both early tumorigenesis and metastasis and thus rationalizes early PDAC dissemination. To overcome the limitations posed to gene dosage studies by the stromal richness of PDAC, we have developed large cell culture resources of metastatic mouse PDAC. Integration of cell culture genomes, transcriptomes and tumour phenotypes with functional studies and human data reveals additional widespread effects of oncogenic dosage variation on cell morphology and plasticity, histopathology and clinical outcome, with the highest KrasMUT levels underlying aggressive undifferentiated phenotypes. We also identify alternative oncogenic gains (Myc, Yap1 or Nfkb2), which collaborate with heterozygous KrasMUT in driving tumorigenesis, but have lower metastatic potential. Mechanistically, different oncogenic gains and dosages evolve along distinct evolutionary routes, licensed by defined allelic states and/or combinations of hallmark tumour suppressor alterations (Cdkn2a, Trp53, Tgfß-pathway). Thus, evolutionary constraints and contingencies direct oncogenic dosage gain and variation along defined routes to drive the early progression of PDAC and shape its downstream biology. Our study uncovers universal principles of Ras-driven oncogenesis that have potential relevance beyond pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Evolución Molecular , Dosificación de Gen , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Animales , Carcinogénesis/genética , Proteínas de Ciclo Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Progresión de la Enfermedad , Femenino , Genes myc , Genes p53 , Humanos , Masculino , Ratones , Mutación , Subunidad p52 de NF-kappa B/genética , Metástasis de la Neoplasia/genética , Proteínas Nucleares/genética , Fenotipo , Fosfoproteínas/genética , Factores de Transcripción/genética , Transcriptoma/genética , Factor de Crecimiento Transformador beta1/genética , Proteínas Señalizadoras YAP
6.
Nucleic Acids Res ; 50(15): 8471-8490, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35904805

RESUMEN

Correct B cell identity at each stage of cellular differentiation during B lymphocyte development is critically dependent on a tightly controlled epigenomic landscape. We previously identified HDAC7 as an essential regulator of early B cell development and its absence leads to a drastic block at the pro-B to pre-B cell transition. More recently, we demonstrated that HDAC7 loss in pro-B-ALL in infants associates with a worse prognosis. Here we delineate the molecular mechanisms by which HDAC7 modulates early B cell development. We find that HDAC7 deficiency drives global chromatin de-condensation, histone marks deposition and deregulates other epigenetic regulators and mobile elements. Specifically, the absence of HDAC7 induces TET2 expression, which promotes DNA 5-hydroxymethylation and chromatin de-condensation. HDAC7 deficiency also results in the aberrant expression of microRNAs and LINE-1 transposable elements. These findings shed light on the mechanisms by which HDAC7 loss or misregulation may lead to B cell-based hematological malignancies.


Asunto(s)
Linfocitos B/citología , Epigénesis Genética , Linfocitos B/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Epigenómica , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos
7.
Eur Respir J ; 61(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36396142

RESUMEN

BACKGROUND: The primary aim of our study was to investigate the association between intubation timing and hospital mortality in critically ill patients with coronavirus disease 2019 (COVID-19)-associated respiratory failure. We also analysed both the impact of such timing throughout the first four pandemic waves and the influence of prior noninvasive respiratory support on outcomes. METHODS: This is a secondary analysis of a multicentre, observational and prospective cohort study that included all consecutive patients undergoing invasive mechanical ventilation due to COVID-19 from across 58 Spanish intensive care units (ICUs) participating in the CIBERESUCICOVID project. The study period was between 29 February 2020 and 31 August 2021. Early intubation was defined as that occurring within the first 24 h of ICU admission. Propensity score matching was used to achieve a balance across baseline variables between the early intubation cohort and those patients who were intubated after the first 24 h of ICU admission. Differences in outcomes between early and delayed intubation were also assessed. We performed sensitivity analyses to consider a different time-point (48 h from ICU admission) for early and delayed intubation. RESULTS: Of the 2725 patients who received invasive mechanical ventilation, a total of 614 matched patients were included in the analysis (307 for each group). In the unmatched population, there were no differences in mortality between the early and delayed groups. After propensity score matching, patients with delayed intubation presented higher hospital mortality (27.3% versus 37.1%; p=0.01), ICU mortality (25.7% versus 36.1%; p=0.007) and 90-day mortality (30.9% versus 40.2%; p=0.02) compared with the early intubation group. Very similar findings were observed when we used a 48-h time-point for early or delayed intubation. The use of early intubation decreased after the first wave of the pandemic (72%, 49%, 46% and 45% in the first, second, third and fourth waves, respectively; first versus second, third and fourth waves p<0.001). In both the main and sensitivity analyses, hospital mortality was lower in patients receiving high-flow nasal cannula (HFNC) (n=294) who were intubated earlier. The subgroup of patients undergoing noninvasive ventilation (n=214) before intubation showed higher mortality when delayed intubation was set as that occurring after 48 h from ICU admission, but not when after 24 h. CONCLUSIONS: In patients with COVID-19 requiring invasive mechanical ventilation, delayed intubation was associated with a higher risk of hospital mortality. The use of early intubation significantly decreased throughout the course of the pandemic. Benefits of such an approach occurred more notably in patients who had received HFNC.


Asunto(s)
COVID-19 , Ventilación no Invasiva , Insuficiencia Respiratoria , Humanos , Estudios Prospectivos , Pandemias , Intubación Intratraqueal/efectos adversos , Respiración Artificial/efectos adversos , Insuficiencia Respiratoria/terapia , Insuficiencia Respiratoria/etiología , Unidades de Cuidados Intensivos
8.
Respir Res ; 24(1): 159, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37328754

RESUMEN

BACKGROUND: The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. METHODS: This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. RESULTS: Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. CONCLUSIONS: A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.


Asunto(s)
COVID-19 , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Estudios Prospectivos , Estudios Retrospectivos , COVID-19/diagnóstico , COVID-19/genética , Enfermedad Crítica , Biomarcadores , Unidades de Cuidados Intensivos
9.
Biochem Soc Trans ; 50(3): 1143-1150, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35587173

RESUMEN

SWI/SNF family of chromatin remodeling complexes uses the energy of ATP to change the structure of DNA, playing key roles in DNA regulation and repair. It is estimated that up to 25% of all human cancers contain alterations in SWI/SNF, although the precise molecular mechanisms for their involvement in tumor progression are largely unknown. Despite the improvements achieved in the last decades on our knowledge of lung cancer molecular biology, it remains the major cause of cancer-related deaths worldwide and it is in urgent need for new therapeutic alternatives. We and others have described recurrent alterations in different SWI/SNF genes in nearly 20% of lung cancer patients, some of them with a significant association with worse prognosis, indicating an important role of SWI/SNF in this fatal disease. These alterations might be therapeutically exploited, as it has been shown in cellular and animal models with the use of EGFR inhibitors, DNA-damaging agents and several immunotherapy approaches. Therefore, a better knowledge of the molecular mechanisms regulated by SWI/SNF alterations in lung cancer might be translated into a therapeutic improvement of this frequently lethal disease. In this review, we summarize all the evidence of SWI/SNF alterations in lung cancer, the current knowledge about the potential mechanisms involved in their tumorigenic role, as well as the results that support a potential exploitation of these alterations to improve the treatment of lung cancer patients.


Asunto(s)
Ensamble y Desensamble de Cromatina , Neoplasias Pulmonares , Animales , Carcinogénesis/genética , Cromatina , Inmunoterapia , Neoplasias Pulmonares/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Ann Plast Surg ; 88(1): 88-92, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33883437

RESUMEN

ABSTRACT: Current understanding of the vascular anatomy of the anterior chest wall suggests that perfusion of the deltopectoral flap may be compromised when crossing the midline at the anterior thoracic wall. The traditional deltopectoral flap is designed longitudinally over the ipsilateral side to avoid the risk of distal flap necrosis. The purpose of this article is to present our experience and results with 26 deltopectoral flaps that were designed and raised with the perforating vessels on the ipsilateral side with the majority of the flap crossing the midline extending to the contralateral side. This anatomic variation in flap design indicates that the sternal midline is not a barrier and that the internal mammary perforator flap may be raised on different longitudinal axes.


Asunto(s)
Arterias Mamarias , Colgajo Perforante , Procedimientos de Cirugía Plástica , Pared Torácica , Cadáver , Humanos , Arterias Mamarias/cirugía , Pared Torácica/cirugía
11.
J Biol Chem ; 295(7): 2001-2017, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31919096

RESUMEN

The MAX network transcriptional repressor (MNT) is an MXD family transcription factor of the basic helix-loop-helix (bHLH) family. MNT dimerizes with another transcriptional regulator, MYC-associated factor X (MAX), and down-regulates genes by binding to E-boxes. MAX also dimerizes with MYC, an oncogenic bHLH transcription factor. Upon E-box binding, the MYC-MAX dimer activates gene expression. MNT also binds to the MAX dimerization protein MLX (MLX), and MNT-MLX and MNT-MAX dimers co-exist. However, all MNT functions have been attributed to MNT-MAX dimers, and no functions of the MNT-MLX dimer have been described. MNT's biological role has been linked to its function as a MYC oncogene modulator, but little is known about its regulation. We show here that MNT localizes to the nucleus of MAX-expressing cells and that MNT-MAX dimers bind and repress the MNT promoter, an effect that depends on one of the two E-boxes on this promoter. In MAX-deficient cells, MNT was overexpressed and redistributed to the cytoplasm. Interestingly, MNT was required for cell proliferation even in the absence of MAX. We show that in MAX-deficient cells, MNT binds to MLX, but also forms homodimers. RNA-sequencing experiments revealed that MNT regulates the expression of several genes even in the absence of MAX, with many of these genes being involved in cell cycle regulation and DNA repair. Of note, MNT-MNT homodimers regulated the transcription of some genes involved in cell proliferation. The tight regulation of MNT and its functionality even without MAX suggest a major role for MNT in cell proliferation.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Proteínas Represoras/genética , Transcripción Genética , Secuencia de Aminoácidos/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Proliferación Celular/genética , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Secuencias Hélice-Asa-Hélice/genética , Humanos , Regiones Promotoras Genéticas , Multimerización de Proteína/genética , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Represoras/química
12.
Blood ; 134(13): 1059-1071, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31383639

RESUMEN

Human lymphopoiesis is a dynamic lifelong process that starts in utero 6 weeks postconception. Although fetal B-lymphopoiesis remains poorly defined, it is key to understanding leukemia initiation in early life. Here, we provide a comprehensive analysis of the human fetal B-cell developmental hierarchy. We report the presence in fetal tissues of 2 distinct CD19+ B-progenitors, an adult-type CD10+ve ProB-progenitor and a new CD10-ve PreProB-progenitor, and describe their molecular and functional characteristics. PreProB-progenitors and ProB-progenitors appear early in the first trimester in embryonic liver, followed by a sustained second wave of B-progenitor development in fetal bone marrow (BM), where together they form >40% of the total hematopoietic stem cell/progenitor pool. Almost one-third of fetal B-progenitors are CD10-ve PreProB-progenitors, whereas, by contrast, PreProB-progenitors are almost undetectable (0.53% ± 0.24%) in adult BM. Single-cell transcriptomics and functional assays place fetal PreProB-progenitors upstream of ProB-progenitors, identifying them as the first B-lymphoid-restricted progenitor in human fetal life. Although fetal BM PreProB-progenitors and ProB-progenitors both give rise solely to B-lineage cells, they are transcriptionally distinct. As with their fetal counterparts, adult BM PreProB-progenitors give rise only to B-lineage cells in vitro and express the expected B-lineage gene expression program. However, fetal PreProB-progenitors display a distinct, ontogeny-related gene expression pattern that is not seen in adult PreProB-progenitors, and they share transcriptomic signatures with CD10-ve B-progenitor infant acute lymphoblastic leukemia blast cells. These data identify PreProB-progenitors as the earliest B-lymphoid-restricted progenitor in human fetal life and suggest that this fetal-restricted committed B-progenitor might provide a permissive cellular context for prenatal B-progenitor leukemia initiation.


Asunto(s)
Feto/citología , Linfopoyesis , Neprilisina/análisis , Células Precursoras de Linfocitos B/citología , Adulto , Médula Ósea/embriología , Médula Ósea/metabolismo , Células Cultivadas , Feto/embriología , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Hígado/embriología , Hígado/metabolismo , Neprilisina/genética , Células Precursoras de Linfocitos B/metabolismo , Transcriptoma
13.
Cytotherapy ; 23(6): 500-509, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33752960

RESUMEN

BACKGROUND AIMS: Corneal inflammation after alkali burns often results in vision loss due to corneal opacification and neovascularization. Mesenchymal stem cells (MSCs) and their secreted factors (secretome) have been studied for their anti-inflammatory and anti-angiogenic properties with encouraging results. However, topical instillation of MSCs or their secretome is often accompanied by issues related to delivery or rapid washout. Polyethylene glycol (PEG) and collagen are well-known biomaterials used extensively in scaffolds for tissue engineering. To effectively suppress alkaline burn-induced corneal injury, the authors proposed encapsulating MSCs within collagen gels cross-linked with multi-functional PEG-succinimidyl esters as a means to deliver the secretome of immobilized MSCs. METHODS: Human MSCs were added to a neutralized collagen solution and mixed with a solution of four-arm PEG-N-hydroxysuccinimide. An ex vivo organ culture was conducted using rabbit corneas injured by alkali burn. MSCs were encapsulated within PEG-collagen hydrogels and injected onto the wounded cornea immediately following alkali burn and washing. Photographs of the ocular surface were taken over a period of 7 days after the alkali burn and processed for immunohistochemical evaluation. Samples were split into three groups: injury without treatment, MSCs alone, and MSCs encapsulated within PEG-collagen hydrogels. RESULTS: All corneas in ex vivo organ culture lost their transparency immediately after alkali burn, and only the groups treated with MSCs and MSCs encapsulated within PEG-collagen hydrogels recovered some transparency after 7 days. Immunohistochemical analysis revealed increased expression of vimentin in the anterior corneal stroma of the group without treatment indicative of fibrotic healing, whereas less stromal vimentin was detected in the group containing MSCs encapsulated within the PEG-collagen hydrogels. CONCLUSIONS: PEG-collagen hydrogels enable the encapsulation of viable MSCs capable of releasing secreted factors onto the ocular surface. Encapsulating MSCs within PEG-collagen hydrogels may be a promising method for delivering their therapeutic benefits in cases of ocular inflammatory diseases, such as alkali burn injuries.


Asunto(s)
Células Madre Mesenquimatosas , Álcalis , Animales , Materiales Biocompatibles , Colágeno , Córnea , Hidrogeles , Técnicas de Cultivo de Órganos , Polietilenglicoles , Conejos
14.
Crit Care ; 25(1): 331, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34517881

RESUMEN

BACKGROUND: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. METHODS: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. RESULTS: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). CONCLUSIONS: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation.


Asunto(s)
COVID-19/terapia , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/terapia , Relación Ventilacion-Perfusión/fisiología , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , COVID-19/fisiopatología , Estudios de Cohortes , Cuidados Críticos/métodos , Cuidados Críticos/tendencias , Femenino , Mortalidad Hospitalaria/tendencias , Humanos , Unidades de Cuidados Intensivos/tendencias , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Ventilación Pulmonar/fisiología , Respiración Artificial/tendencias , Síndrome de Dificultad Respiratoria/epidemiología , Síndrome de Dificultad Respiratoria/fisiopatología , Estudios Retrospectivos , España/epidemiología
15.
Blood ; 130(17): 1911-1922, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-28835438

RESUMEN

NPM1 mutations define the commonest subgroup of acute myeloid leukemia (AML) and frequently co-occur with FLT3 internal tandem duplications (ITD) or, less commonly, NRAS or KRAS mutations. Co-occurrence of mutant NPM1 with FLT3-ITD carries a significantly worse prognosis than NPM1-RAS combinations. To understand the molecular basis of these observations, we compare the effects of the 2 combinations on hematopoiesis and leukemogenesis in knock-in mice. Early effects of these mutations on hematopoiesis show that compound Npm1cA/+;NrasG12D/+ or Npm1cA;Flt3ITD share a number of features: Hox gene overexpression, enhanced self-renewal, expansion of hematopoietic progenitors, and myeloid differentiation bias. However, Npm1cA;Flt3ITD mutants displayed significantly higher peripheral leukocyte counts, early depletion of common lymphoid progenitors, and a monocytic bias in comparison with the granulocytic bias in Npm1cA/+;NrasG12D/+ mutants. Underlying this was a striking molecular synergy manifested as a dramatically altered gene expression profile in Npm1cA;Flt3ITD , but not Npm1cA/+;NrasG12D/+ , progenitors compared with wild-type. Both double-mutant models developed high-penetrance AML, although latency was significantly longer with Npm1cA/+;NrasG12D/+ During AML evolution, both models acquired additional copies of the mutant Flt3 or Nras alleles, but only Npm1cA/+;NrasG12D/+ mice showed acquisition of other human AML mutations, including IDH1 R132Q. We also find, using primary Cas9-expressing AMLs, that Hoxa genes and selected interactors or downstream targets are required for survival of both types of double-mutant AML. Our results show that molecular complementarity underlies the higher frequency and significantly worse prognosis associated with NPM1c/FLT3-ITD vs NPM1/NRAS-G12D-mutant AML and functionally confirm the role of HOXA genes in NPM1c-driven AML.


Asunto(s)
Leucemia Mieloide Aguda/genética , Mutación/genética , Proteínas Nucleares/genética , Alelos , Animales , Diferenciación Celular , Autorrenovación de las Células , Supervivencia Celular/genética , Progresión de la Enfermedad , Dosificación de Gen , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/patología , Ratones , Células Madre Multipotentes/metabolismo , Mielopoyesis , Proteínas Nucleares/metabolismo , Nucleofosmina , Penetrancia , Fenotipo , Factores de Transcripción/genética , Transcriptoma/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
16.
Haematologica ; 104(6): 1176-1188, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30679323

RESUMEN

B-cell acute lymphoblastic leukemia is the commonest childhood cancer. In infants, B-cell acute lymphoblastic leukemia remains fatal, especially in patients with t(4;11), present in ~80% of cases. The pathogenesis of t(4;11)/KMT2A-AFF1+ (MLL-AF4+) infant B-cell acute lymphoblastic leukemia remains difficult to model, and the pathogenic contribution in cancer of the reciprocal fusions resulting from derivative translocated-chromosomes remains obscure. Here, "multi-layered" genome-wide analyses and validation were performed on a total of 124 de novo cases of infant B-cell acute lymphoblastic leukemia uniformly diagnosed and treated according to the Interfant 99/06 protocol. These patients showed the most silent mutational landscape reported so far for any sequenced pediatric cancer. Recurrent mutations were exclusively found in K-RAS and N-RAS, were subclonal and were frequently lost at relapse, despite a larger number of non-recurrent/non-silent mutations. Unlike non-MLL-rearranged B-cell acute lymphoblastic leukemias, B-cell receptor repertoire analysis revealed minor, non-expanded B-cell clones in t(4;11)+ infant B-cell acute lymphoblastic leukemia, and RNA-sequencing showed transcriptomic similarities between t(4;11)+ infant B-cell acute lymphoblastic leukemias and the most immature human fetal liver hematopoietic stem and progenitor cells, confirming a "pre-VDJ" fetal cellular origin for both t(4;11) and RAS mut The reciprocal fusion AF4-MLL was expressed in only 45% (19/43) of the t(4;11)+ patients, and HOXA cluster genes are exclusively expressed in AF4-MLL-expressing patients. Importantly, AF4-MLL/HOXA-expressing patients had a significantly better 4-year event-free survival (62.4% vs 11.7%, P=0.001), and overall survival (73.7 vs 25.2%, P=0.016). AF4-MLL expression retained its prognostic significance when analyzed in a Cox model adjusting for risk stratification according to the Interfant-06 protocol based on age at diagnosis, white blood cell count and response to prednisone. This study has clinical implications for disease outcome and diagnostic risk-stratification of t(4;11)+ infant B-cell acute lymphoblastic leukemia.


Asunto(s)
Biomarcadores de Tumor , Susceptibilidad a Enfermedades , Estudio de Asociación del Genoma Completo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/etiología , Biopsia , Médula Ósea/metabolismo , Aberraciones Cromosómicas , Perfilación de la Expresión Génica , Reordenamiento Génico , Inestabilidad Genómica , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Homeodominio/genética , Humanos , Hibridación Fluorescente in Situ , Mutación , Proteína de la Leucemia Mieloide-Linfoide/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Pronóstico , Transducción de Señal , Análisis de Supervivencia , Recombinación V(D)J , Proteínas ras/metabolismo
17.
Haematologica ; 104(6): 1189-1201, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30679325

RESUMEN

The t(4;11)(q21;q23) translocation is associated with high-risk infant pro-B-cell acute lymphoblastic leukemia and arises prenatally during embryonic/fetal hematopoiesis. The developmental/pathogenic contribution of the t(4;11)-resulting MLL-AF4 (MA4) and AF4-MLL (A4M) fusions remains unclear; MA4 is always expressed in patients with t(4;11)+ B-cell acute lymphoblastic leukemia, but the reciprocal fusion A4M is expressed in only half of the patients. Because prenatal leukemogenesis manifests as impaired early hematopoietic differentiation, we took advantage of well-established human embryonic stem cell-based hematopoietic differentiation models to study whether the A4M fusion cooperates with MA4 during early human hematopoietic development. Co-expression of A4M and MA4 strongly promoted the emergence of hemato-endothelial precursors, both endothelial- and hemogenic-primed. Double fusion-expressing hemato-endothelial precursors specified into significantly higher numbers of both hematopoietic and endothelial-committed cells, irrespective of the differentiation protocol used and without hijacking survival/proliferation. Functional analysis of differentially expressed genes and differentially enriched H3K79me3 genomic regions by RNA-sequencing and H3K79me3 chromatin immunoprecipitation-sequencing, respectively, confirmed a hematopoietic/endothelial cell differentiation signature in double fusion-expressing hemato-endothelial precursors. Importantly, chromatin immunoprecipitation-sequencing analysis revealed a significant enrichment of H3K79 methylated regions specifically associated with HOX-A cluster genes in double fusion-expressing differentiating hematopoietic cells. Overall, these results establish a functional and molecular cooperation between MA4 and A4M fusions during human hematopoietic development.


Asunto(s)
Diferenciación Celular/genética , Desarrollo Embrionario/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Hematopoyesis/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética , Animales , Apoptosis/genética , Ciclo Celular/genética , Técnicas de Cocultivo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Histonas/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Metilación , Ratones , Ratones Noqueados
18.
Blood ; 128(1): e1-9, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27121471

RESUMEN

The diagnosis of hematologic malignancies relies on multidisciplinary workflows involving morphology, flow cytometry, cytogenetic, and molecular genetic analyses. Advances in cancer genomics have identified numerous recurrent mutations with clear prognostic and/or therapeutic significance to different cancers. In myeloid malignancies, there is a clinical imperative to test for such mutations in mainstream diagnosis; however, progress toward this has been slow and piecemeal. Here we describe Karyogene, an integrated targeted resequencing/analytical platform that detects nucleotide substitutions, insertions/deletions, chromosomal translocations, copy number abnormalities, and zygosity changes in a single assay. We validate the approach against 62 acute myeloid leukemia, 50 myelodysplastic syndrome, and 40 blood DNA samples from individuals without evidence of clonal blood disorders. We demonstrate robust detection of sequence changes in 49 genes, including difficult-to-detect mutations such as FLT3 internal-tandem and mixed-lineage leukemia (MLL) partial-tandem duplications, and clinically significant chromosomal rearrangements including MLL translocations to known and unknown partners, identifying the novel fusion gene MLL-DIAPH2 in the process. Additionally, we identify most significant chromosomal gains and losses, and several copy neutral loss-of-heterozygosity mutations at a genome-wide level, including previously unreported changes such as homozygosity for DNMT3A R882 mutations. Karyogene represents a dependable genomic diagnosis platform for translational research and for the clinical management of myeloid malignancies, which can be readily adapted for use in other cancers.


Asunto(s)
Genómica/métodos , Neoplasias Hematológicas , Leucemia Mieloide , Síndromes Mielodisplásicos , Proteínas Portadoras/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Femenino , Forminas , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Leucemia Mieloide/diagnóstico , Leucemia Mieloide/genética , Masculino , Mutación , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética , Tirosina Quinasa 3 Similar a fms/genética
19.
Nature ; 486(7403): 400-4, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22722201

RESUMEN

All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.


Asunto(s)
Neoplasias de la Mama/genética , Transformación Celular Neoplásica/genética , Mutagénesis/genética , Mutación/genética , Oncogenes/genética , Factores de Edad , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/patología , Citosina/metabolismo , Análisis Mutacional de ADN , Femenino , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Clasificación del Tumor , Reproducibilidad de los Resultados , Transducción de Señal/genética
20.
Proc Natl Acad Sci U S A ; 112(45): 13982-7, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26508638

RESUMEN

Here, we show CRISPR/Cas9-based targeted somatic multiplex-mutagenesis and its application for high-throughput analysis of gene function in mice. Using hepatic single guide RNA (sgRNA) delivery, we targeted large gene sets to induce hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). We observed Darwinian selection of target genes, which suppress tumorigenesis in the respective cellular/tissue context, such as Pten or Cdkn2a, and conversely found low frequency of Brca1/2 alterations, explaining mutational spectra in human ICC/HCC. Our studies show that multiplexed CRISPR/Cas9 can be used for recessive genetic screening or high-throughput cancer gene validation in mice. The analysis of CRISPR/Cas9-induced tumors provided support for a major role of chromatin modifiers in hepatobiliary tumorigenesis, including that of ARID family proteins, which have recently been reported to be mutated in ICC/HCC. We have also comprehensively characterized the frequency and size of chromosomal alterations induced by combinatorial sgRNA delivery and describe related limitations of CRISPR/Cas9 multiplexing, as well as opportunities for chromosome engineering in the context of hepatobiliary tumorigenesis. Our study describes novel approaches to model and study cancer in a high-throughput multiplexed format that will facilitate the functional annotation of cancer genomes.


Asunto(s)
Sistemas CRISPR-Cas/genética , Carcinoma Hepatocelular/genética , Modelos Animales de Enfermedad , Genómica/métodos , Ensayos Analíticos de Alto Rendimiento , Neoplasias Hepáticas/genética , Mutagénesis/genética , Animales , Secuencia de Bases , Marcación de Gen , Técnicas Histológicas , Hígado/metabolismo , Ratones , Datos de Secuencia Molecular , Selección Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA