Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 103(3): 2171-2229, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603157

RESUMEN

Anthropogeny is a classic term encompassing transdisciplinary investigations of the origins of the human species. Comparative anthropogeny is a systematic comparison of humans and other living nonhuman hominids (so-called "great apes"), aiming to identify distinctly human features in health and disease, with the overall goal of explaining human origins. We begin with a historical perspective, briefly describing how the field progressed from the earliest evolutionary insights to the current emphasis on in-depth molecular and genomic investigations of "human-specific" biology and an increased appreciation for cultural impacts on human biology. While many such genetic differences between humans and other hominids have been revealed over the last two decades, this information remains insufficient to explain the most distinctive phenotypic traits distinguishing humans from other living hominids. Here we undertake a complementary approach of "comparative physiological anthropogeny," along the lines of the preclinical medical curriculum, i.e., beginning with anatomy and considering each physiological system and in each case considering genetic and molecular components that are relevant. What is ultimately needed is a systematic comparative approach at all levels from molecular to physiological to sociocultural, building networks of related information, drawing inferences, and generating testable hypotheses. The concluding section will touch on distinctive considerations in the study of human evolution, including the importance of gene-culture interactions.


Asunto(s)
Evolución Biológica , Hominidae , Animales , Humanos , Hominidae/genética , Genoma , Fenotipo
2.
Cell ; 159(6): 1290-9, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25480294

RESUMEN

Salmonella Typhi is an exclusive human pathogen that causes typhoid fever. Typhoid toxin is a S. Typhi virulence factor that can reproduce most of the typhoid fever symptoms in experimental animals. Toxicity depends on toxin binding to terminally sialylated glycans on surface glycoproteins. Human glycans are unusual because of the lack of CMAH, which in other mammals converts N-acetylneuraminic acid (Neu5Ac) to N-glycolylneuraminic acid (Neu5Gc). Here, we report that typhoid toxin binds to and is toxic toward cells expressing glycans terminated in Neu5Ac (expressed by humans) over glycans terminated in Neu5Gc (expressed by other mammals). Mice constitutively expressing CMAH thus displaying Neu5Gc in all tissues are resistant to typhoid toxin. The atomic structure of typhoid toxin bound to Neu5Ac reveals the structural bases for its binding specificity. These findings provide insight into the molecular bases for Salmonella Typhi's host specificity and may help the development of therapies for typhoid fever.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Glicoproteínas de Membrana/química , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Salmonella typhi/química , Animales , Toxinas Bacterianas/genética , Línea Celular , Células Cultivadas , Cristalografía por Rayos X , Especificidad del Huésped , Humanos , Células Jurkat , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Ácidos Neuramínicos/metabolismo , Pan troglodytes , Salmonella typhi/patogenicidad , Fiebre Tifoidea/microbiología
3.
Mol Cell ; 75(2): 394-407.e5, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31227230

RESUMEN

The structural diversity of glycans on cells-the glycome-is vast and complex to decipher. Glycan arrays display oligosaccharides and are used to report glycan hapten binding epitopes. Glycan arrays are limited resources and present saccharides without the context of other glycans and glycoconjugates. We used maps of glycosylation pathways to generate a library of isogenic HEK293 cells with combinatorially engineered glycosylation capacities designed to display and dissect the genetic, biosynthetic, and structural basis for glycan binding in a natural context. The cell-based glycan array is self-renewable and reports glycosyltransferase genes required (or blocking) for interactions through logical sequential biosynthetic steps, which is predictive of structural glycan features involved and provides instructions for synthesis, recombinant production, and genetic dissection strategies. Broad utility of the cell-based glycan array is demonstrated, and we uncover higher order binding of microbial adhesins to clustered patches of O-glycans organized by their presentation on proteins.


Asunto(s)
Ingeniería Genética , Redes y Vías Metabólicas/genética , Polisacáridos/química , Proteínas/genética , Epítopos/genética , Epítopos/inmunología , Glicosilación , Glicosiltransferasas/genética , Células HEK293 , Humanos , Oligosacáridos/genética , Polisacáridos/clasificación , Polisacáridos/genética , Polisacáridos/inmunología , Proteínas/inmunología
4.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33658363

RESUMEN

Blood pH is tightly maintained between 7.35 and 7.45, and acidosis (pH <7.3) indicates poor prognosis in sepsis, wherein lactic acid from anoxic tissues overwhelms the buffering capacity of blood. Poor sepsis prognosis is also associated with low zinc levels and the release of High mobility group box 1 (HMGB1) from activated and/or necrotic cells. HMGB1 added to whole blood at physiological pH did not bind leukocyte receptors, but lowering pH with lactic acid to mimic sepsis conditions allowed binding, implying the presence of natural inhibitor(s) preventing binding at normal pH. Testing micromolar concentrations of divalent cations showed that zinc supported the robust binding of sialylated glycoproteins with HMGB1. Further characterizing HMGB1 as a sialic acid-binding lectin, we found that optimal binding takes place at normal blood pH and is markedly reduced when pH is adjusted with lactic acid to levels found in sepsis. Glycan array studies confirmed the binding of HMGB1 to sialylated glycan sequences typically found on plasma glycoproteins, with binding again being dependent on zinc and normal blood pH. Thus, HMGB1-mediated hyperactivation of innate immunity in sepsis requires acidosis, and micromolar zinc concentrations are protective. We suggest that the potent inflammatory effects of HMGB1 are kept in check via sequestration by plasma sialoglycoproteins at physiological pH and triggered when pH and zinc levels fall in late stages of sepsis. Current clinical trials independently studying zinc supplementation, HMGB1 inhibition, or pH normalization may be more successful if these approaches are combined and perhaps supplemented by infusions of heavily sialylated molecules.


Asunto(s)
Acidosis/sangre , Proteína HMGB1/sangre , Sepsis/sangre , Sialoglicoproteínas/sangre , Zinc/sangre , Acidosis/inmunología , Acidosis/metabolismo , Acidosis/patología , Proteínas Portadoras , Proteína HMGB1/farmacología , Humanos , Concentración de Iones de Hidrógeno , Inmunidad Innata , Lipopolisacáridos/farmacología , Polisacáridos/química , Sepsis/inmunología , Sepsis/patología , Ácidos Siálicos/química , Sialoglicoproteínas/química , Zinc/metabolismo
5.
J Infect Dis ; 228(11): 1610-1620, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37722688

RESUMEN

Bacterial vaginosis (BV) is a dysbiotic condition of the vaginal microbiome associated with higher risk of infection by Neisseria gonorrhoeae-the cause of gonorrhea. Here we test if one known facet of BV-the presence of bacterial cytolysins-leads to mobilization of intracellular contents that enhance gonococcal virulence. We cloned and expressed recombinant vaginolysin (VLY), a cytolysin produced by the BV-associated bacterium Gardnerella, verifying that it liberates contents of cervical epithelial (HeLa) cells, while vector control preparations did not. We tested if VLY mediates a well-known gonococcal virulence mechanism-the molecular mimicry of host glycans. To evade host immunity, N. gonorrhoeae caps its lipooligosaccharide (LOS) with α2-3-linked sialic acid. For this, gonococci must scavenge a metabolite made inside host cells. Flow cytometry-based lectin-binding assays showed that gonococci exposed to vaginolysin-liberated contents of HeLa cells displayed greater sialic acid capping of their LOS. This higher level of bacterial sialylation was accompanied by increased binding of the complement regulatory protein factor H, and greater resistance to complement attack. Together these results suggest that cytolytic activities present during BV may enhance the ability of N. gonorrhoeae to capture intracellular metabolites and evade host immunity via glycan molecular mimicry.


Asunto(s)
Gonorrea , Vaginosis Bacteriana , Femenino , Humanos , Neisseria gonorrhoeae , Gardnerella/metabolismo , Células HeLa , Ácido N-Acetilneuramínico/metabolismo , Imitación Molecular , Proteínas Bacterianas/genética , Vaginosis Bacteriana/microbiología , Bacterias , Gonorrea/microbiología , Factor H de Complemento
6.
J Biol Chem ; 298(5): 101900, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398357

RESUMEN

Many pathogenic bacteria secrete AB5 toxins that can be virulence factors. Cytotoxic A subunits are delivered to the cytosol following B subunit binding to specific host cell surface glycans. Some B subunits are not associated with A subunits, for example, YpeB of Yersinia pestis, the etiologic agent of plague. Plague cannot be eradicated because of Y. pestis' adaptability to numerous hosts. We previously showed selective binding of other B5 pentamers to a sialoglycan microarray, with sialic acid (Sia) preferences corresponding to those prominently expressed by various hosts, for example, N-acetylneuraminic acid (Neu5Ac; prominent in humans) or N-glycolylneuraminic acid (Neu5Gc; prominent in ruminant mammals and rodents). Here, we report that A subunit phylogeny evolved independently of B subunits and suggest a future B subunit nomenclature based on bacterial species names. We also found via phylogenetic analysis of B subunits, which bind Sias, that homologous molecules show poor correlation with species phylogeny. These data indicate ongoing lateral gene transfers between species, including mixing of A and B subunits. Consistent with much broader host range of Y. pestis, we show that YpeB recognizes all mammalian Sia types, except for 4-O-acetylated ones. Notably, YpeB alone causes dose-dependent cytotoxicity, which is abolished by a mutation (Y77F) eliminating Sia recognition, suggesting that cell proliferation and death are promoted via lectin-like crosslinking of cell surface sialoglycoconjugates. These findings help explain the host range of Y. pestis and could be important for pathogenesis. Overall, our data indicate ongoing rapid evolution of both host Sias and pathogen toxin-binding properties.


Asunto(s)
Bacterias , Toxinas Bacterianas , Especificidad del Huésped , Polisacáridos , Animales , Bacterias/clasificación , Bacterias/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidad , Evolución Molecular , Mamíferos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Filogenia , Peste/microbiología , Polisacáridos/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo , Yersinia pestis/metabolismo
7.
Glycobiology ; 33(2): 99-103, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36648443

RESUMEN

Nonulosonic acids or non-2-ulosonic acids (NulOs) are an ancient family of 2-ketoaldonic acids (α-ketoaldonic acids) with a 9-carbon backbone. In nature, these monosaccharides occur either in a 3-deoxy form (referred to as "sialic acids") or in a 3,9-dideoxy "sialic-acid-like" form. The former sialic acids are most common in the deuterostome lineage, including vertebrates, and mimicked by some of their pathogens. The latter sialic-acid-like molecules are found in bacteria and archaea. NulOs are often prominently positioned at the outermost tips of cell surface glycans, and have many key roles in evolution, biology and disease. The diversity of stereochemistry and structural modifications among the NulOs contributes to more than 90 sialic acid forms and 50 sialic-acid-like variants described thus far in nature. This paper reports the curation of these diverse naturally occurring NulOs at the NCBI sialic acid page (https://www.ncbi.nlm.nih.gov/glycans/sialic.html) as part of the NCBI-Glycans initiative. This includes external links to relevant Carbohydrate Structure Databases. As the amino and hydroxyl groups of these monosaccharides are extensively derivatized by various substituents in nature, the Symbol Nomenclature For Glycans (SNFG) rules have been expanded to represent this natural diversity. These developments help illustrate the natural diversity of sialic acids and related NulOs, and enable their systematic representation in publications and online resources.


Asunto(s)
Ácido N-Acetilneuramínico , Ácidos Siálicos , Animales , Ácidos Siálicos/química , Polisacáridos/química , Monosacáridos , Catalogación
8.
Mol Biol Evol ; 39(8)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35809046

RESUMEN

The myelomonocytic receptor CD33 (Siglec-3) inhibits innate immune reactivity by extracellular V-set domain recognition of sialic acid (Sia)-containing "self-associated molecular patterns" (SAMPs). We earlier showed that V-set domain-deficient CD33-variant allele, protective against late-onset Alzheimer's Disease (LOAD), is derived and specific to the hominin lineage. We now report multiple hominin-specific CD33 V-set domain mutations. Due to hominin-specific, fixed loss-of-function mutation in the CMAH gene, humans lack N-glycolylneuraminic acid (Neu5Gc), the preferred Sia-ligand of ancestral CD33. Mutational analysis and molecular dynamics (MD)-simulations indicate that fixed change in amino acid 21 of hominin V-set domain and conformational changes related to His45 corrected for Neu5Gc-loss by switching to N-acetylneuraminic acid (Neu5Ac)-recognition. We show that human-specific pathogens Neisseria gonorrhoeae and Group B Streptococcus selectively bind human CD33 (huCD33) as part of immune-evasive molecular mimicry of host SAMPs and that this binding is significantly impacted by amino acid 21 modification. In addition to LOAD-protective CD33 alleles, humans harbor derived, population-universal, cognition-protective variants at several other loci. Interestingly, 11 of 13 SNPs in these human genes (including CD33) are not shared by genomes of archaic hominins: Neanderthals and Denisovans. We present a plausible evolutionary scenario to compile, correlate, and comprehend existing knowledge about huCD33-evolution and suggest that grandmothering emerged in humans.


Asunto(s)
Abuelos , Hominidae , Alelos , Aminoácidos , Animales , Cognición , Hominidae/genética , Humanos
9.
Tetrahedron ; 1422023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37981995

RESUMEN

The stable N-acetyl analogues of biologically important 9-O-acetylated b-series gangliosides including 9NAc-GD3, 9NAc-GD2, 9NAc-GD1b, and 9NAc-GT1b were chemoenzymatically synthesized from a GM3 sphingosine. Two chemoenzymatic methods using either 6-azido-6-deoxy-N-acetylmannosamine (ManNAc6N3) as a chemoenzymatic synthon or 6-acetamido-6-deoxy-N-acetylmannosamine (ManNAc6NAc) as an enzymatic precursor for 9-acetamido-9-deoxy-N-acetylneuraminic acid (Neu5Ac9NAc) were developed and compared for the synthesis of 9NAc-GD3. The latter method was found to be more efficient and was used to produce the desired 9-N-acetylated glycosylsphingosines. Furthermore, glycosylsphingosine acylation reaction conditions were improved to obtain target 9-N-acetylated gangliosides in a faster reaction with an easier purification process compared to the previous acylation conditions.

10.
Biochemistry ; 61(18): 2007-2013, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36054099

RESUMEN

Many disease-causing viruses target sialic acids on the surface of host cells. Some viruses bind preferentially to sialic acids with O-acetyl modification at the hydroxyl group of C7, C8, or C9 on the glycerol-like side chain. Studies of proteins binding to sialosides containing O-acetylated sialic acids are crucial in understanding the related diseases but experimentally difficult due to the lability of the ester group. We recently showed that O-acetyl migration among hydroxyl groups of C7, C8, and C9 in sialic acids occurs in all directions in a pH-dependent manner. In the current study, we elucidate a full mechanistic pathway for the migration of O-acetyl among C7, C8, and C9. We used an ab initio nanoreactor to explore potential reaction pathways and density functional theory, pKa calculations, and umbrella sampling to investigate elementary steps of interest. We found that when a base is present, migration is easy in any direction and involves three key steps: deprotonation of the hydroxyl group, cyclization between the two carbons, and the migration of the O-acetyl group. This dynamic equilibrium may play a defensive role against pathogens that evolve to gain entry to the cell by binding selectively to one acetylation state.


Asunto(s)
Glicerol , Ácido N-Acetilneuramínico , Acetilación , Ésteres , Ácido N-Acetilneuramínico/metabolismo , Nanotecnología , Ácidos Siálicos/química
11.
Glycobiology ; 32(11): 921-932, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-35925816

RESUMEN

N-glycolylated carbohydrates are amino sugars with an N-glycolyl amide group. These glycans have not been well studied due to their surprising rarity in nature in comparison with N-acetylated carbohydrates. Recently, however, there has been increasing interest in N-glycolylated sugars because the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc), apparently the only source of all N-glycolylated sugars in deuterostomes, appears to be involved in xenosialitis (inflammation associated with consumption of Neu5Gc-rich red meats). Xenosialitis has been implicated in cancers as well as other diseases including atherosclerosis. Furthermore, metabolites of Neu5Gc have been shown to be incorporated into glycosaminoglycans (GAGs), resulting in N-glycolylated GAGs. These N-glycolylated GAGs have important potential applications, such as dating the loss of the Neu5Gc-generating CMAH gene in humans and being explored as a xenosialitis biomarker and/or estimate of the body burden of diet-derived Neu5Gc, to understand the risks associated with the consumption of red meats. This review explores N-glycolylated carbohydrates, how they are metabolized to N-glycolylglucosamine and N-glycolylgalactosamine, and how these metabolites can be incorporated into N-glycolylated GAGs in human tissues. We also discuss other sources of N-glycolylated sugars, such as recombinant production from microorganisms using metabolic engineering as well as chemical synthesis.


Asunto(s)
Ácido N-Acetilneuramínico , Ácidos Neuramínicos , Humanos , Ácido N-Acetilneuramínico/metabolismo , Amino Azúcares , Polisacáridos , Inflamación
12.
Glycobiology ; 32(12): 1116-1136, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-35926090

RESUMEN

Glycans that are abundantly displayed on vertebrate cell surface and secreted molecules are often capped with terminal sialic acids (Sias). These diverse 9-carbon-backbone monosaccharides are involved in numerous intrinsic biological processes. They also interact with commensals and pathogens, while undergoing dynamic changes in time and space, often influenced by environmental conditions. However, most of this sialoglycan complexity and variation remains poorly characterized by conventional techniques, which often tend to destroy or overlook crucial aspects of Sia diversity and/or fail to elucidate native structures in biological systems, i.e. in the intact sialome. To date, in situ detection and analysis of sialoglycans has largely relied on the use of plant lectins, sialidases, or antibodies, whose preferences (with certain exceptions) are limited and/or uncertain. We took advantage of naturally evolved microbial molecules (bacterial adhesins, toxin subunits, and viral hemagglutinin-esterases) that recognize sialoglycans with defined specificity to delineate 9 classes of sialoglycan recognizing probes (SGRPs: SGRP1-SGRP9) that can be used to explore mammalian sialome changes in a simple and systematic manner, using techniques common in most laboratories. SGRP candidates with specificity defined by sialoglycan microarray studies were engineered as tagged probes, each with a corresponding nonbinding mutant probe as a simple and reliable negative control. The optimized panel of SGRPs can be used in methods commonly available in most bioscience labs, such as ELISA, western blot, flow cytometry, and histochemistry. To demonstrate the utility of this approach, we provide examples of sialoglycome differences in tissues from C57BL/6 wild-type mice and human-like Cmah-/- mice.


Asunto(s)
Hemaglutininas Virales , Ácidos Siálicos , Humanos , Ratones , Animales , Ratones Endogámicos C57BL , Ácidos Siálicos/química , Mamíferos/metabolismo , Polisacáridos
13.
Glycobiology ; 32(12): 1101-1115, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36048714

RESUMEN

Vertebrate sialic acids (Sias) display much diversity in modifications, linkages, and underlying glycans. Slide microarrays allow high-throughput explorations of sialoglycan-protein interactions. A microarray presenting ~150 structurally defined sialyltrisaccharides with various Sias linkages and modifications still poses challenges in planning, data sorting, visualization, and analysis. To address these issues, we devised a simple 9-digit code for sialyltrisaccharides with terminal Sias and underlying two monosaccharides assigned from the nonreducing end, with 3 digits assigning a monosaccharide, its modifications, and linkage. Calculations based on the encoding system reveal >113,000 likely linear sialyltrisaccharides in nature. Notably, a biantennary N-glycan with 2 terminal sialyltrisaccharides could thus have >1010 potential combinations and a triantennary N-glycan with 3 terminal sequences, >1015 potential combinations. While all possibilities likely do not exist in nature, sialoglycans encode enormous diversity. While glycomic approaches are used to probe such diverse sialomes, naturally occurring bacterial AB5 toxin B subunits are simpler tools to track the dynamic sialome in biological systems. Sialoglycan microarray was utilized to compare sialoglycan-recognizing bacterial toxin B subunits. Unlike the poor correlation between B subunits and species phylogeny, there is stronger correlation with Sia-epitope preferences. Further supporting this pattern, we report a B subunit (YenB) from Yersinia enterocolitica (broad host range) recognizing almost all sialoglycans in the microarray, including 4-O-acetylated-Sias not recognized by a Yersinia pestis orthologue (YpeB). Differential Sia-binding patterns were also observed with phylogenetically related B subunits from Escherichia coli (SubB), Salmonella Typhi (PltB), Salmonella Typhimurium (ArtB), extra-intestinal E.coli (EcPltB), Vibrio cholera (CtxB), and cholera family homologue of E. coli (EcxB).


Asunto(s)
Toxinas Bacterianas , Escherichia coli , Salmonella typhi/química , Ácidos Siálicos , Toxinas Bacterianas/química , Polisacáridos , Toxina del Cólera
14.
Am J Pathol ; 191(8): 1474-1486, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34294193

RESUMEN

Humans cannot synthesize the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) because of an inactivating deletion in the cytidine-5'-monophospho-(CMP)-N-acetylneuraminic acid hydroxylase (CMAH) gene responsible for its synthesis. Human Neu5Gc deficiency can lead to development of anti-Neu5Gc serum antibodies, the levels of which can be affected by Neu5Gc-containing diets and by disease. Metabolic incorporation of dietary Neu5Gc into human tissues in the face of circulating antibodies against Neu5Gc-bearing glycans is thought to exacerbate inflammation-driven diseases like cancer and atherosclerosis. Probing of sera with sialoglycan arrays indicated that patients with Duchenne muscular dystrophy (DMD) had a threefold increase in overall anti-Neu5Gc antibody titer compared with age-matched controls. These antibodies recognized a broad spectrum of Neu5Gc-containing glycans. Human-like inactivation of the Cmah gene in mice is known to modulate severity in a variety of mouse models of human disease, including the X chromosome-linked muscular dystrophy (mdx) model for DMD. Cmah-/-mdx mice can be induced to develop anti-Neu5Gc-glycan antibodies as humans do. The presence of anti-Neu5Gc antibodies, in concert with induced Neu5Gc expression, correlated with increased severity of disease pathology in Cmah-/-mdx mice, including increased muscle fibrosis, expression of inflammatory markers in the heart, and decreased survival. These studies suggest that patients with DMD who harbor anti-Neu5Gc serum antibodies might exacerbate disease severity when they ingest Neu5Gc-rich foods, like red meats.


Asunto(s)
Autoanticuerpos/sangre , Distrofia Muscular de Duchenne/inmunología , Distrofia Muscular de Duchenne/patología , Ácidos Neuramínicos/sangre , Ácidos Neuramínicos/inmunología , Animales , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Niño , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Distrofia Muscular de Duchenne/sangre
15.
Arterioscler Thromb Vasc Biol ; 41(11): 2730-2739, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34587757

RESUMEN

Objective: Species-specific pseudogenization of the CMAH gene during human evolution eliminated common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) biosynthesis from its precursor N-acetylneuraminic acid (Neu5Ac). With metabolic nonhuman Neu5Gc incorporation into endothelia from red meat, the major dietary source, anti-Neu5Gc antibodies appeared. Human-like Ldlr-/-Cmah-/- mice on a high-fat diet supplemented with a Neu5Gc-enriched mucin, to mimic human red meat consumption, suffered increased atherosclerosis if human-like anti-Neu5Gc antibodies were elicited. Approach and Results: We now ask whether interventional Neu5Ac feeding attenuates metabolically incorporated Neu5Gc-mediated inflammatory acceleration of atherogenesis in this Cmah-/-Ldlr-/- model system. Switching to a Neu5Gc-free high-fat diet or adding a 5-fold excess of Collocalia mucoid-derived Neu5Ac in high-fat diet protects against accelerated atherosclerosis. Switching completely from a Neu5Gc-rich to a Neu5Ac-rich diet further reduces severity. Remarkably, feeding Neu5Ac-enriched high-fat diet alone has a substantial intrinsic protective effect against atherosclerosis in Ldlr-/- mice even in the absence of dietary Neu5Gc but only in the human-like Cmah-null background. Conclusions: Interventional Neu5Ac feeding can mitigate or prevent the red meat/Neu5Gc-mediated increased risk for atherosclerosis, and has an intrinsic protective effect, even in the absence of Neu5Gc feeding. These findings suggest that similar interventions should be tried in humans and that Neu5Ac-enriched diets alone should also be investigated further.


Asunto(s)
Aorta/metabolismo , Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Suplementos Dietéticos , Ácido N-Acetilneuramínico/administración & dosificación , Ácidos Neuramínicos/administración & dosificación , Placa Aterosclerótica , Alimentación Animal , Animales , Anticuerpos/metabolismo , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Células Espumosas/metabolismo , Células Espumosas/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/inmunología , Ácidos Neuramínicos/metabolismo , Pan troglodytes , Receptores de LDL/genética , Receptores de LDL/metabolismo , Sialadenitis/metabolismo , Sialadenitis/patología , Células THP-1
16.
J Immunol ; 204(12): 3283-3295, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32434942

RESUMEN

Neisseria gonorrhoeae deploys a unique immune evasion strategy wherein the lacto-N-neotetraose termini of lipooligosaccharide (LOS) are "capped" by a surface LOS sialyltransferase (Lst), using extracellular host-derived CMP-sialic acid (CMP-Neu5Ac in humans). LOS sialylation enhances complement resistance by recruiting factor H (FH; alternative complement pathway inhibitor) and also by limiting classical pathway activation. Sialylated LOS also engages inhibitory Siglecs on host leukocytes, dampening innate immunity. Previously, we showed that analogues of CMP-sialic acids (CMP-nonulosonates [CMP-NulOs]), such as CMP-Leg5,7Ac2 and CMP-Neu5Ac9N3, are also substrates for Lst. Incorporation of Leg5,7Ac2 and Neu5Ac9N3 into LOS results in N. gonorrhoeae being fully serum sensitive. Importantly, intravaginal administration of CMP-Leg5,7Ac2 attenuated N. gonorrhoeae colonization of mouse vaginas. In this study, we characterize and develop additional candidate therapeutic CMP-NulOs. CMP-ketodeoxynonulosonate (CMP-Kdn) and CMP-Kdn7N3, but not CMP-Neu4,5Ac2, were substrates for Lst, further elucidating gonococcal Lst specificity. Lacto-N-neotetraose LOS capped with Kdn and Kdn7N3 bound FH to levels ∼60% of that seen with Neu5Ac and enabled gonococci to resist low (3.3%) but not higher (10%) concentrations of human complement. CMP-Kdn, CMP-Neu5Ac9N3, and CMP-Leg5,7Ac2 administered intravaginally (10 µg/d) to N. gonorrhoeae-colonized mice were equally efficacious. Of the three CMP-NulOs above, CMP-Leg5,7Ac2 was the most pH and temperature stable. In addition, Leg5,7Ac2-fed human cells did not display this NulO on their surface. Moreover, CMP-Leg5,7Ac2 was efficacious against several multidrug-resistant gonococci in mice with a humanized sialome (Cmah-/- mice) or humanized complement system (FH/C4b-binding protein transgenic mice). CMP-Leg5,7Ac2 and CMP-Kdn remain viable leads as topical preventive/therapeutic agents against the global threat of multidrug-resistant N. gonorrhoeae.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/farmacología , Citidina Monofosfato/análogos & derivados , Citidina Monofosfato/fisiología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Gonorrea/tratamiento farmacológico , Neisseria gonorrhoeae/efectos de los fármacos , Ácidos Neuramínicos/farmacología , Ácidos Siálicos/farmacología , Animales , Línea Celular Tumoral , Factor H de Complemento/metabolismo , Proteínas del Sistema Complemento/farmacología , Citidina Monofosfato/farmacología , Femenino , Gonorrea/metabolismo , Gonorrea/microbiología , Humanos , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Oligosacáridos/fisiología , Sialiltransferasas/farmacología
17.
Proc Natl Acad Sci U S A ; 116(32): 16036-16045, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31332008

RESUMEN

Cardiovascular disease (CVD) events due to atherosclerosis cause one-third of worldwide deaths and risk factors include physical inactivity, age, dyslipidemia, hypertension, diabetes, obesity, smoking, and red meat consumption. However, ∼15% of first-time events occur without such factors. In contrast, coronary events are extremely rare even in closely related chimpanzees in captivity, despite human-like CVD-risk-prone blood lipid profiles, hypertension, and mild atherosclerosis. Similarly, red meat-associated enhancement of CVD event risk does not seem to occur in other carnivorous mammals. Thus, heightened CVD risk may be intrinsic to humans, and genetic changes during our evolution need consideration. Humans exhibit a species-specific deficiency of the sialic acid N-glycolylneuraminic acid (Neu5Gc), due to pseudogenization of cytidine monophosphate-N-acetylneuraminic acid (Neu5Ac) hydroxylase (CMAH), which occurred in hominin ancestors ∼2 to 3 Mya. Ldlr-/- mice with human-like Cmah deficiency fed a sialic acids (Sias)-free high-fat diet (HFD) showed ∼1.9-fold increased atherogenesis over Cmah wild-type Ldlr-/- mice, associated with elevated macrophage cytokine expression and enhanced hyperglycemia. Human consumption of Neu5Gc (from red meat) acts as a "xeno-autoantigen" via metabolic incorporation into endogenous glycoconjugates, as interactions with circulating anti-Neu5Gc "xeno-autoantibodies" potentiate chronic inflammation ("xenosialitis"). Cmah-/-Ldlr-/- mice immunized with Neu5Gc-bearing antigens to generate human-like anti-Neu5Gc antibodies suffered a ∼2.4-fold increased atherosclerosis on a Neu5Gc-rich HFD, compared with Neu5Ac-rich or Sias-free HFD. Lesions in Neu5Gc-immunized and Neu5Gc-rich HFD-fed Cmah-/-Ldlr-/- mice were more advanced but unexplained by lipoprotein or glucose changes. Human evolutionary loss of CMAH likely contributes to atherosclerosis predisposition via multiple intrinsic and extrinsic mechanisms, and future studies could consider this more human-like model.


Asunto(s)
Aterosclerosis/enzimología , Oxigenasas de Función Mixta/deficiencia , Animales , Bovinos , Citocinas/metabolismo , Dieta Alta en Grasa , Femenino , Humanos , Hiperglucemia/patología , Inflamación/patología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Oxigenasas de Función Mixta/metabolismo , Modelos Biológicos , Fenotipo , Receptores de LDL/deficiencia , Receptores de LDL/metabolismo , Ácidos Siálicos/metabolismo , Especificidad de la Especie
18.
Proc Natl Acad Sci U S A ; 116(15): 7465-7470, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30910970

RESUMEN

Circulating platelets have important functions in thrombosis and in modulating immune and inflammatory responses. However, the role of platelets in innate immunity to bacterial infection is largely unexplored. While human platelets rapidly kill Staphylococcus aureus, we found the neonatal pathogen group B Streptococcus (GBS) to be remarkably resistant to platelet killing. GBS possesses a capsule polysaccharide (CPS) with terminal α2,3-linked sialic acid (Sia) residues that mimic a common epitope present on the human cell surface glycocalyx. A GBS mutant deficient in CPS Sia was more efficiently killed by human platelets, thrombin-activated platelet releasate, and synthetic platelet-associated antimicrobial peptides. GBS Sia is known to bind inhibitory Sia-recognizing Ig superfamily lectins (Siglecs) to block neutrophil and macrophage activation. We show that human platelets also express high levels of inhibitory Siglec-9 on their surface, and that GBS can engage this receptor in a Sia-dependent manner to suppress platelet activation. In a mouse i.v. infection model, antibody-mediated platelet depletion increased susceptibility to platelet-sensitive S. aureus but did not alter susceptibility to platelet-resistant GBS. Elimination of murine inhibitory Siglec-E partially reversed platelet suppression in response to GBS infection. We conclude that GBS Sia has dual roles in counteracting platelet antimicrobial immunity: conferring intrinsic resistance to platelet-derived antimicrobial components and inhibiting platelet activation through engagement of inhibitory Siglecs. We report a bacterial virulence factor for evasion of platelet-mediated innate immunity.


Asunto(s)
Cápsulas Bacterianas/metabolismo , Plaquetas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Activación Plaquetaria , Infecciones Estreptocócicas/metabolismo , Streptococcus agalactiae , Factores de Virulencia/metabolismo , Adulto , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos B/genética , Antígenos de Diferenciación de Linfocitos B/metabolismo , Actividad Bactericida de la Sangre , Plaquetas/patología , Femenino , Glicocálix/metabolismo , Glicocálix/patología , Humanos , Masculino , Ratones , Ratones Noqueados , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Infecciones Estreptocócicas/patología , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidad
19.
Molecules ; 27(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36014560

RESUMEN

Many disease-causing viruses target sialic acids (Sias), a class of nine-carbon sugars known to coat the surface of many cells, including those in the lungs. Human beta coronaviridae, known for causing respiratory tract diseases, often bind Sias, and some preferentially bind to those with 9-O-Ac-modification. Currently, co-binding of SARS-CoV-2, a beta coronavirus responsible for the COVID-19 pandemic, to human Sias has been reported and its preference towards α2-3-linked Neu5Ac has been shown. Nevertheless, O-acetylated Sias-protein binding studies are difficult to perform, due to the ester lability. We studied the binding free energy differences between Neu5,9Ac2α2-3GalßpNP and its more stable 9-NAc mimic binding to SARS-CoV-2 spike protein using molecular dynamics and alchemical free energy simulations. We identified multiple Sia-binding pockets, including two novel sites, with similar binding affinities to those of MERS-CoV, a known co-binder of sialic acid. In our binding poses, 9-NAc and 9-OAc Sias bind similarly, suggesting an experimentally reasonable mimic to probe viral mechanisms.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Sitios de Unión , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Pandemias , Unión Proteica , Receptores Virales/metabolismo , SARS-CoV-2 , Ácidos Siálicos/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
20.
Glycobiology ; 31(3): 231-242, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32845322

RESUMEN

CD33-related Siglecs are often found on innate immune cells and modulate their reactivity by recognition of sialic acid-based "self-associated molecular patterns" and signaling via intracellular tyrosine-based cytosolic motifs. Previous studies have shown that Siglec-11 specifically binds to the brain-enriched polysialic acid (polySia/PSA) and that its microglial expression in the brain is unique to humans. Furthermore, human microglial Siglec-11 exists as an alternate splice form missing the exon encoding the last (fifth) Ig-like C2-set domain of the extracellular portion of the protein, but little is known about the functional consequences of this variation. Here, we report that the recombinant soluble human microglial form of Siglec-11 (hSiglec-11(4D)-Fc) binds endogenous and immobilized polySia better than the tissue macrophage form (hSiglec-11(5D)-Fc) or the chimpanzee form (cSiglec-11(5D)-Fc). The Siglec-11 protein is also prone to aggregation, potentially influencing its ligand-binding ability. Additionally, Siglec-11 protein can be secreted in both intact and proteolytically cleaved forms. The microglial splice variant has reduced proteolytic release and enhanced incorporation into exosomes, a process that appears to be regulated by palmitoylation of cysteines in the cytosolic tail. Taken together, these data demonstrate that human brain specific microglial hSiglec-11(4D) has different molecular properties and can be released on exosomes and/or as proteolytic products, with the potential to affect polySia-mediated brain functions at a distance.


Asunto(s)
Encéfalo/efectos de los fármacos , Lectinas/metabolismo , Proteínas de la Membrana/metabolismo , Ácidos Siálicos/farmacología , Encéfalo/metabolismo , Humanos , Lectinas/genética , Proteínas de la Membrana/genética , Isoformas de Proteínas , Ácidos Siálicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA